
Fine-Grain Configurability for Secure Communication

Matti A. Hiltunen Sumita Jaiprakash Richard D. Schlichting Carlos A. Ugarte

TR 00-05



Exploiting Fine-Grain Configurability for Secure Communication 1

Matti A. Hiltunen, Sumita Jaiprakash, Richard D. Schlichting, and Carlos A. Ugarte

TR 00-05

Abstract

Current solutions for providing communication security in network applications allow cus-
tomization of certain security attributes and techniques, but in limited ways and without the
benefit of a single unifying framework. Here, the design of a highly-customizable extensible
service called SecComm is described in which attributes such as authenticity, privacy, integrity,
and non-repudiation can be customized in arbitrary ways. With SecComm, applications can
open secure communication connections in which only those attributes selected from among a
wide range of possibilities are enforced, and are enforced using the strength or technique de-
sired. SecComm has been implemented using Cactus, a system for building configurable com-
munication services. In Cactus, different properties and techniques are implemented as software
modules called micro-protocols that interact using an event-driven execution paradigm. This
non-hierarchical design approach has a high degree of flexibility, yet provides enough structure
and control that it is easy to build collections of micro-protocols realizing a large number of di-
verse properties. This paper gives an overview of the design and implementation of SecComm,
and gives initial performance figures for a prototype implementation running on a cluster of
Pentiums using the Mach MK 7.3 operating system.

June 16, 2000

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1This work supported in part by the Office of Naval Research under grant N00014-96-0207, the Defense Advanced
Research Projects Agency under grant N66001-97-C-8518, and the National Science Foundation under grants CDA-
9500991 and ANI-9979438.



1 Introduction

The ability to ensure security attributes such as confidentiality, integrity, and authenticity is an increasingly
important requirement for systems that implement network communication. While a common need for
many applications, the best security solution for a given situation can vary widely depending on the potential
impact of a security violation. For example, the theft of a credit card number might result in the loss of a few
thousand dollars, while the theft of critical military information might result in the loss of human life. The
tradeoff, of course, is that the cost of providing security—in terms of execution time or some other metric
such as network throughput—increases as the guarantees are strengthened. To support the diverse needs of
varying applications, then, secure communication services should allow the tradeoff between the level and
the cost of the guarantee to be explicitly managed.

The value of customizing communication security in this way has been recognized in recent Internet
security protocols such as IPSec [KA98], SSL [FKK96], S-HTTP [RS98], and TLS [DA99]. For example,
IPSec, a set of protocols developed by the IETF to support secure packet exchange at the IP layer, provides
two security options. Theauthentication header(AH) option does not encrypt the data contents of the
packet, but provides optional authenticity, integrity, and replay prevention by adding an AH that contains
a cryptographic message digest. Theencapsulating security payload(ESP) option provides privacy by
encrypting the data contents of the packet and optional authenticity, integrity, and replay prevention using
a message digest. While such facilities are useful, the degree of customization is usually limited, either to
ensure interoperability or to improve performance. Thus, existing services typically do not support options
such as encrypting a message with multiple encryption methods, alternating encryption methods, or other
methods that result in data expansion (e.g., steganography [JJ98]).

We argue in this paper that it should be possible to customize all security attributes related to commu-
nication and to customize them in essentially arbitrary ways. Such customization allows explicit control
over the tradeoffs between security and performance for a given attribute, not only by providing multiple
algorithmic choices, but also by allowing combinations of algorithms to be used. A communication service
supporting the fine-grain and dynamic application of security has other potential benefits as well. For exam-
ple, security algorithms can be used on a per-message rather than a per-connection basis,artificial diversity
[CP97] can be realized by customizing different instances of a service in different ways, and services can
adapt dynamically to react to changed security requirements or to a change in perceived threats.

To support this argument, we present the design of a highly customizable and extensible secure com-
munication service called SecComm. With SecComm, applications can open secure communication con-
nections in which the security attributes and the strength of guarantees associated with each attribute can
be customized at a fine-grain level. In addition, SecComm allows an attribute to be guaranteed using com-
binations of security algorithms, and it supports extensibility by allowing the addition of new algorithms
as separate modules. At another level, our approach can also be viewed as a technique for implementing
protocols such as IPSec, SSL, S-HTTP, and TLS in a modular and extensible fashion.

The customization and extensibility attributes of SecComm derive from the use of Cactus as the un-
derlying implementation platform [HSH+99]. Cactus is a framework for constructing highly-configurable
network services, where each service attribute or variant is implemented as an independent software mod-
ule called amicro-protocol. A customized version of the service is then constructed by choosing micro-
protocols based on the desired properties. In the Cactus model, micro-protocols within a service are com-
posed non-hierarchically and interact primarily using a flexible event mechanism. This indirect approach
to communication promotes the independence of micro-protocols, yet is flexible enough that even complex

1



interactions are possible. While other researchers have also proposed systems that allow for modular com-
position of security properties [OOSS94, RBH+98, NK98], none of these approaches has the advantages
of fine-grain composability and non-hierarchical composition available in SecComm. In short, our work
pushes the envelope on configurability and flexibility much further than any other work in this area.

This paper has several goals. The first is to argue that fine-grain configurability and extensibility are
valuable characteristics for realizing security attributes in future communication services. The second is
to demonstrate that the Cactus approach provides a good platform for constructing configurable secure
communication services in an efficient and secure manner. The third is to present the implementation of
SecComm service based on Cactus.

2 Configurable Communication Security

2.1 Overview

Our system model consists of a collection of machines connected by a local- or wide-area communication
network. Application level processes communicate by using a communication subsystem that typically
consists of IP, some transport level protocol such as TCP or UDP, and potentially some middleware level
protocols such as IIOP [OMG98]. The SecComm protocol can be inserted in any layer above IP in the
communication subsystem as illustrated in figure 1. (The internal structure of SecComm is explained further
in section 3.) SecComm is generally independent of the choice of the lower level communication protocol,
but the guarantees provided by the lower level may affect the set of viable micro-protocols. For example,
some security micro-protocols require that the underlying protocol provides reliable ordered delivery, which
constrains the use of these particular micro-protocols to the case where SecComm is used on top of TCP or
some other transport protocol with similar guarantees.

The method used to insert SecComm into the communication subsystem depends on the particular imple-
mentation platform. Systems such as thex-kernel [HP91], CORDS [TMR96], and Scout [MMO+95] allow
explicit construction of protocol graphs. In such systems, SecComm is simply inserted into the protocol
graph before compilation. On other systems, SecComm is either inserted into the existing kernel communi-
cation subsystem using methods such as loadable modules, or is built on top of TCP or UDP sockets in user
space. The method of integration does not affect the internal design of SecComm.

A secure communication connection is established by opening asessionthrough the SecComm service.
Each session has two sets of customized security attributes that are specified at open time, one for messages
traversing the session from the application to the network and the other for messages traversing the session
in the opposite direction. This feature allows, for instance, the security guarantees for request messages from
a client to a server to be different than those for the reply messages. SecComm is also independent of the
communication paradigm used by the application, i.e., it can be used for symmetric group communication
as well as for asymmetric client/server interactions. Finally, the SecComm service does not impose a single
form of key management on applications. The keys can be established on a higher level and simply passed
to the SecComm session or, alternatively, the SecComm service can establish the keys itself. If the latter
is chosen, options include protocols such as Diffie-Hellman [DH76] or the use of external Certification
Authorities (CA) and Key Distribution Centers (KDC) such as Kerberos [SNS88, NT94].

2



API: Open, Close, Push

API: Pop

OR

OR

TCP

TCP IP

. . . 

Micro-protocols Events

. . . 

. . . 

. . . 

. . . 

SecComm

Application / Middleware

Shared data structures
DESPrivacy

KeyedMD5Integrity

RSAAuthenticity

ClientKeyDistribution

Keys

Participants

msgFromAbove

msgFromBelow

openSession

keyMiss

Figure 1: System protocol stack.

2.2 Security properties

As a first step towards exploiting fine-grain configurability, security properties and their variants are identi-
fied. Well-known abstract security properties include:

� Authenticity . Ensures that a receiver can be certain of the identity of the message sender. Can be
implemented using public key cryptography [Hel78], any shared secret, or a trusted intermediary such
as Kerberos [SNS88, NT94].

� Privacy. Ensures that only the intended receiver of a message is able to interpret the contents. Can be
implemented using any shared secret, public key cryptography, or combinations of methods.

� Integrity . Ensures that the receiver of a message can be certain that the message contents have not
been modified during transit. Some authenticity and privacy methods also provide integrity as a side
effect if the message format has enough redundancy to detect violations. Additional redundancy can
be provided using message digest algorithms such as MD5 [Riv92]. Integrity can be provided without
privacy, but at a minimum, the message digest itself must be protected.

� Non-repudiation. Ensures that a receiver can be assured that the sender cannot later deny having
sent the message. Relies on authenticity provided by public key cryptography and requires that the
receiver store the encrypted message as proof.

We can identify other security properties that are focused on prevention of specific security attacks. These
properties include:

� Replay prevention. Prevents an intruder from gaining an advantage by retransmitting old messages.
Can be implemented using timestamps, sequence numbers, or other such nonces in messages. Typi-
cally used in conjunction with authenticity, privacy, or integrity since otherwise it would be trivial for
an intruder to generate a new message that appears to be valid.

3



� Known plain text attack prevention. Prevents an intruder from utilizing known plain text based

attacks by including additional random information (“salt”) at the beginning of a message.

In addition to these security properties, key management is completely customizable.

2.3 Cactus implementation platform

A service in Cactus is implemented as acomposite protocol, with each semantic variant of a security attribute
or other functional component within the composite protocol implemented as amicro-protocol(figure 1). A
micro-protocol is, in turn, structured as a collection ofevent handlers, which are procedure-like segments
of code that are executed when a specifiedeventoccurs. Events are used to signify state changes of interest,
such as “message arrival from the network”. When such an event occurs, all event handlers bound to that
event are executed. Events can be raised explicitly by micro-protocols or by the composite protocol.

The primary event-handling operations are:

� bind(event, handler, order, staticargs). Specifies thathandler is to be executed wheneventoccurs.
order is a numeric value specifying the relative order in whichhandlershould be executed relative to
other handlers bound to the same event. When the handler is executed, the argumentsstatic argsare
passed as part of the handler arguments.

� raise(event, dynamicargs, mode, delay). Causeseventto be raised afterdelaytime units. Ifdelayis
0, the event is raised immediately. The occurrence of an event causes handlers bound to the event to be
executed withdynamicargs (andstatic argspassed in thebind operation) as arguments. Execution
can either block the invoker until the handlers have completed execution (mode= SYNC) or allow the
caller to continue (mode= ASYNC).

Other operations are available for unbinding handlers from events, creating and deleting events, halting
event execution, and canceling a delayed event. Execution of handlers is atomic with respect to concur-
rency, that is, a handler is executed to completion before execution of any other handler is started unless the
handler voluntarily yields execution by either raising another event synchronously or by invoking a blocking
semaphore operation. In the case of a synchronous raise, the handlers bound to the raised event are executed
before control returns to the handler that invoked the raise operation. In addition to the flexible event mech-
anism, Cactus supports shared data that can be accessed by all micro-protocols configured into a composite
protocol.

Finally, the system supports a Cactus message abstraction designed to facilitate development of con-
figurable services. The main features provided by Cactus messages are named message attributes and a
coordination mechanism that only allows a message be sent out of the composite protocol when agreed by
all micro-protocols. The message attributes are a generalization of traditional message headers and they
have scopes corresponding to a single composite protocol (local), all the protocols on a single machine
(stack), and the peer protocols at the sender and receiver (peer). A customizable pack routine concate-
nates peer attributes to the message body for network transmission, or for operations such as encryption and
compression. A corresponding unpack routine extracts the peer attributes from a message at the receiver.

Several prototype implementations of Cactus have been constructed, including one written in C that
runs on Mach version MK 7.3 from OpenGroup [Rey95], another written in C++ that runs on Solaris and
Linux, and a third written in Java that runs on multiple platforms. An initial prototype of SecComm has
been implemented on the MK version of Cactus on a cluster of Pentiums. Other prototype services that have

4



been successfully implemented using Cactus or the predecessor Coyote system [BHSC98] include group
RPC [HS95], membership [HS98], and a real-time channel abstraction [HSH+99].

3 SecComm Design

3.1 Application programming interface

The SecComm service allows a higher level service or application to open secure connections and then send
and receive messages through these connections. The specific operations exported by SecComm are the
following:

� Open(participants,role,properties). Opens a session for a new communication connection, wherepar-
ticipantsis an array identifying the communicating principals,role identifies the role of this participant
in opening the connection (active or passive), andpropertiesis a specification of the desired security
properties of the session.

� Push(msg). Passes a message from a higher level protocol or application to a SecComm session to be
transmitted with the appropriate security attributes to the participants.

� Pop(msg). Passes a message from a lower level protocol to a SecComm session to be decrypted,
checked, and potentially delivered to a higher level protocol. When the SecComm protocol passes a
message to the higher level and authentication is required, it adds a stack attribute AUTHSENDER
that is the ID of the authenticated sender.

� Close(): Closes a SecComm communication session.

We assume that the participants of the communication connection negotiate the properties for the connection
on a higher level. Once negotiated, properties are specified in the open operation as two ordered lists of
micro-protocols and their arguments, the first for messages going downward through the composite protocol
and the second for messages going upward. Thus, for example, the following specifies that messages going
downward are processed first by DESPrivacy and then by RSAAuthority, while messages going upwards
are processed by the same micro-protocols but in the reverse order:

fDESPrivacy(DESkey), RSAAuthenticity(RSAkey); RSAAuthenticity(RSAkey), DESPrivacy(DESkey)g

This relatively low level approach to specifying properties is an interim strategy. Our eventual goal is to
develop an approach in which properties are given as formal specifications that are then translated automat-
ically into collections of micro-protocols and arguments.

3.2 Shared data structures and events

The main use of shared data in SecComm is to store keys. In particular, each SecComm session contains
a shared tableKeysthat stores all the keys currently used in this session. This table is initialized using the
predefined keys passed in the Open operation, with other keys potentially added during execution by key
distribution micro-protocols.

Our prototype implementation of SecComm uses the cryptographic package Cryptlib [Gut98] to provide
basic cryptographic functionality. Any cryptolibrary with the necessary functions could be used, however.

5



The design of SecComm uses a number of events for communication between micro-protocols and to
initiate execution when messages arrive. The SecComm composite protocol uses the following events to
indicate message arrivals from above and below:

� msgFromAbove(msg). Indicates thatmsghas arrived from a higher level protocol or application.

� dataMsgFromBelow(msg). Indicates that a datamsghas arrived from a lower level protocol or OS.

� keyMsgFromBelow(msg). Indicates that amsgassociated with key distribution has arrived from a
lower level protocol or OS.

These events are raised within the push and pop operations provided as part of the composite protocol’s
runtime system. The pop operation has been customized using facilities provided by the Cactus framework
to distinguish between data and key distribution messages.

Other events are used for communication between the micro-protocols that secure data communication
and those that implement key distribution and security monitoring:

� keyMiss(index,length,check). Indicates that the keyindex in the Keys table is required. The key
should be of sizelengthand satisfy validity testcheck. The validity test can be used to eliminate weak
keys.

� securityAlert(type,msg). Indicates that a potential security violation oftyperelated tomsghas been
detected.

3.3 Micro-protocol structure

The abstract security attributes described in section 2.2, as well as key distribution, are implemented by
one or more micro-protocols. When a number of micro-protocols implement variations of the same abstract
property, we collectively refer to them as aclassof micro-protocols. For example, the class of privacy
micro-protocols includes DESPrivacy, RSAPrivacy, and IDEAPrivacy micro-protocols that use DES, RSA,
and IDEA algorithms, respectively. Figure 2 illustrates the main micro-protocol classes and typical event
interactions between them.

The design of the SecComm service allows any combination of security micro-protocols to be used
together in both static and dynamic ways. Naturally, there may be some configuration constraints between
micro-protocols that restrict which combinations are feasible. These constraints and other composability
issues are discussed in section 4.3.

The SecComm service consists of two major types of micro-protocols: basic security micro-protocols
that perform simple security transformations such as encryption or integrity checks, and meta-security
micro-protocols that build more complex security protocols using the basic security micro-protocols as
building blocks. An example of a simple security micro-protocol would be DESPrivacy, which provides
privacy of data exchange using the DES algorithm. An example of a meta-security protocol would be Mul-
tiSecurity, which uses multiple basic security micro-protocols to provide stronger guarantees. Each type is
now described in turn.

3.4 Basic security micro-protocols

The basic security micro-protocols are simple, as illustrated in figure 3. These micro-protocols typically
consist of two event handlers and an initialization section. One of the event handlers is used for the data

6



msgFromAbove

SecComm

securityAlert

keyMiss

dataMsgFromBelow

keyMsgFromBelow

SecurityAudit

KeyDistribution

Privacy

Authenticity

Integrity
Non-Repudiation

ReplayPrevention

KnownPlaintext
AttackPrevention

Figure 2: Micro-protocol classes and their interactions.

passing down through the SecComm protocol and the other one is used for data passing up through the
protocol. The initialization section of the micro-protocol is executed when a new SecComm connection is
opened, i.e., when a session is created.

A basic security micro-protocol typically takes 4 or 5 arguments. In this parameter list,downEventand
upEventare events that signify message arrival from an upper- and lower-level protocol, respectively. The
two handlers in the micro-protocol are bound to these events to initiate execution at the appropriate time.
Thedorderanduorderparameters are the relative orders in which this particular security micro-protocol is
to be applied to messages flowing down and up, respectively. Finally, thekey is an index in the Keys data
structure. Thekeyargument is omitted from basic security micro-protocols that do not use keys, such as
replay prevention.

Note that if the key used by the security micro-protocol has yet not been established, it raises the event
keyMiss that is handled by the key distribution micro-protocols (see section 3.6). This event is raised
synchronously and thus, the handler is blocked until the associated event handlers have completed execution.
This allows the key distribution micro-protocols to block the appropriate handler until the key has been
established.

The design uses event pointers as arguments rather than fixed event names to allow multiple types of
configurations, an approach that demonstrates the inherent flexibility provided by an event-based execution
model. As the most simple case, assume that a SecComm configuration uses only basic security micro-
protocols. The configuration can then be initialized to use themsgFromAboveand dataMsgFromBelow
events directly as follows:

BasicSecurity(msgFromAbove,1,dataMsgFromBelow,1,0)

The same mechanism can also be used to establish different security guarantees for different communication
directions, such as might be used in client/server communication. For example, to provide DES-based
privacy only for communication from server to client, the following can be used, wherenullEventsare
events that are never raised:

7



micro-protocol BasicSecurity(downEvent,dorder,upEvent,uorder,key)f

handler ProcessDownMsg(msg)f
if Keys[myKey] == NULL raise(keyMiss,myKey,SYNC);
add attributes, pack, encrypt, etc.;

g
handler ProcessUpMsg(msg)f

if Keys[myKey] == NULL raise(keyMiss,myKey,SYNC);
decrypt, unpack, check attributes, etc.;

g
initial f myKey = key;

bind(downEvent,ProcessDownMsg,dorder);bind(upEvent,ProcessUpMsg,uorder);
g

g

Figure 3: Generic basic security micro-protocol.

At client: At server:
nullEvent = new Event(); nullEvent = new Event();
DESPrivacy(nullEvent,1,dataMsgFromBelow,1,0); DESPrivacy(msgFromAbove,1,nullEvent,1,0);

As a more complex example, the same mechanism can be used to easily create a variant of triple DES, as
follows:

DESPrivacy(msgFromAbove,1,dataMsgFromBelow,1,0);
DESPrivacy(dataMsgFromBelow,2,msgFromAbove,2,1);
DESPrivacy(msgFromAbove,3,dataMsgFromBelow,3,0);

This variant exploits the fact that our DESPrivacy micro-protocol encrypts messages associated withdown-
Eventand decrypts messages associated withupEventto realize the appropriate triple DES semantics. Note,
however, that this variation is not identical to standard 3DES since the whole message is encrypted com-
pletely by one method at a time, whereas 3DES encrypts each block of a message with each of the three
encryption methods before the next block is processed. This problem could be eliminated if each of the
micro-protocols received a block of data at a time rather than the whole message, but varying block sizes re-
quired by different encryption algorithms would make this solution more complicated. In our simple design,
the standard 3DES could be implemented as one micro-protocol.

The above example illustrates the importance of taking the relative execution order of micro-protocols
into account for handling eventsmsgFromAboveanddataMsgFromBelow. Specifically, the order in which
the cryptographic micro-protocols are applied at the receiver must be the reverse of the order used at the
sender since cryptographic methods are typically not commutative. The need to realize ordering constraints
between micro-protocols or micro-protocol classes is common in other situations as well. For example,
replay prevention must be executed before data integrity so that any nonces added will be protected from
modification by the message digest. Other often subtle constraints–e.g., that message integrity should be
done before privacy—are identified in [AN96, AN95].

8



micro-protocol MetaSecurity(downEvent,dorder,upEvent,uorder, downBasicEvents,upBasicEvents)f

handler ProcessDownMsg(msg)f
in some orderraise(downBasicEvents[i],msg,SYNC);

g
handler ProcessUpMsg(msg)f

in some orderraise(upBasicEvents[i],msg,SYNC);
g
initial f

bind(downEvent,ProcessDownMsg,dorder);bind(upEvent,ProcessUpMsg,uorder);
g

g

Figure 4: Generic meta-security micro-protocol.

3.5 Meta-security micro-protocols

Meta-security micro-protocols construct more complex security protocols out of the basic security proto-
cols. For example, a meta-security micro-protocol may apply multiple or alternating basic security micro-
protocols to a message. The outline of a typical meta-security micro-protocol is presented in figure 4. In this
design, the micro-protocol is passed vectors of down and up events that correspond to the events to which
handlers in the basic micro-protocols have been bound as argumentsdownBasicEventsandupBasicEvents.

The concept of meta-security micro-protocols can be applied to strengthen any security property for
which using multiple or alternating methods provides enhanced guarantees. Privacy, authenticity, and mes-
sage integrity among others fall under this category. The SecComm design does not prevent the same idea
from being used for other properties such as replay prevention and non-repudiation, but the benefit for such
properties is more questionable. Finally, note that the ease with which such meta-security micro-protocols
can be constructed is again a direct result of flexibility provided by the Cactus model and something that
would be more difficult in systems that support only hierarchical composition.

3.6 Key distribution micro-protocols

If the keys used by the secret key cryptographic methods are not agreed upona priori, they must be estab-
lished after the communication session is opened. Among the potential options for key distribution are:

� Asymmetric. One communicating principal (e.g., a client or a server) creates a session key and distributes it to
the other principals.

� Symmetric. A session key is created using the Diffie-Hellman algorithm.

� External. Some external security principal creates the session key and distributes it to communicating princi-
pals (e.g., Kerberos, certification authority).

Key distribution has security risks analogous to data communication, but with greater potential impact
since the compromised key will likely be used for a period of time. Thus, the same techniques used for
data security can also often be applied for key distribution security. In our design, key distribution micro-
protocols are meta-security micro-protocols and thus, can easily utilize basic security micro-protocols when
appropriate. Naturally, not all techniques developed for data security apply for key distribution, and in such
cases, the key distribution micro-protocols must directly implement the necessary techniques. For example,

9



micro-protocol KeyDistribution(myKeys,downBasicEvents,upBasicEvents)f

handler ProcessKeyMiss(index)f
if index2 myKeysf

create a key distribution msg;
msg.addAttr(KEY,index,PEER);
process msg using downBasicEvents;
send msg; P(semaphore);g

g
handler ProcessKeyMsg(msg)f

if msg.getAttr(KEY)2 myKeysf
process key distribution msg using upBasicEvents;
Keys[msg.getAttr(Key)] = new key; V(semaphore);g

g
initial f bind(keyMiss,ProcessKeyMiss);bind(keyMsgFromBelow,ProcessKeyMsg);g

g

Figure 5: Generic key distribution micro-protocol.

if Kerberos is used for key distribution, Kerberos-specific methods are used for privacy, authenticity, in-
tegrity, and replay prevention, while Kerberos message formats are used for the key distribution process. A
KerberosKeyDistribution micro-protocol would directly implement the required techniques to interact with
a Kerberos server.

Figure 5 outlines a generic key distribution micro-protocol. It takes as arguments an array of key indices
(myKeys) that it needs to establish and set of event pointers used to secure key distribution messages. The
arraymyKeysincludes the identities of the principals when necessary. For example, if the key distribution
micro-protocol must obtain the RSA public keys of security principals, it must know the identity of the
principal whose key is required. Note that the event handler for thekeyMissevent blocks on a semaphore
to ensure that the security micro-protocol that raised the event will be blocked until the key is ready to
be used. Note also the operations addAttr and getAttr, which insert and extract named message attributes,
respectively.

4 Implementation and Performance

A prototype of SecComm has been implemented using the C version of Cactus on a cluster of 133 MHz Pen-
tium PCs running OpenGroup/RI MK 7.3 and CORDS. As noted above, the internal structure of SecComm
is largely independent of the specific version of Cactus used and the execution platform.

This section provides details on some of the micro-protocols available in SecComm, as well as ini-
tial performance numbers. The goal of the micro-protocol descriptions is to be representative rather than
inclusive.

4.1 Micro-protocols

Privacy. SecComm includes numerous basic privacy micro-protocols, ranging from those based on stan-
dardized cryptographic methods such as DESPrivacy and RSAPrivacy, to others based on non-standard
methods. The latter include OneTimePadPrivacy, which encrypts a stream of messages by xoring it with
a secret file that is shared by the sender and receiver. Other simple privacy micro-protocols include XOR-

10



Privacy that xors each block of the data with a secret key. Such method does not provide a high level of
privacy, but may be enough the deter a casual observer. Moreover, combinations of fast trivial methods used
in conjunction with a standard method such as DESPrivacy may enhance privacy considerably by making it
harder to use specialized equipment designed to break DES, for example.

Authenticity, integrity, and non-repudiation. Authenticity, integrity, and non-repudiation are discussed
together since non-repudiation depends on authenticity and integrity can be considered a subset of authen-
ticity. Authenticity and integrity can be achieved either by encrypting the entire message or by using a
message digest generated by a cryptographic message digest or hash function such as MD5 [Riv92] or SHA
[SHA95]. If a standard message digest function is used, the digest itself must be protected by either en-
crypting it or by calculating the digest over the data and a secret key (e.g., keyed MD5 [MS95a] and SHA
[MS95b]).

SecComm includes two basic message digest micro-protocols, MD5Integrity and SHAIntegrity, and
their keyed counterparts, KeyedMD5Integrity and KeyedSHAIntegrity. Each of these micro-protocols cre-
ates a message digest as a peer attribute with tag DIGEST at the sender, and checks it at the receiver. If the
non-keyed integrity micro-protocols are used, they must be executed before the corresponding cryptographic
protocol so that the message digest is protected.

Two authenticity micro-protocols based on public keys are also included. RSAAuthenticity encrypts
the entire message with the sender’s private key, while RSADigestAuthenticity encrypts only the message
digest. Note that the integrity micro-protocols may be used with RSAAuthenticity. In this case, the entire
message including the message digest will be encrypted for authenticity.

Unlike methods based on public keys, with shared secrets, one micro-protocol can be used to provide
both privacy and authenticity by encrypting the entire message. Similar to RSADigestAuthenticity, however,
we can develop variants of the privacy protocols that only encrypt the message digest. Since these micro-
protocols do not provide privacy, we consider them exclusively authenticity micro-protocols. Thus, the DES
based micro-protocol is called DESDigestAuthenticity.

Non-repudiation is based on public key authentication, with the receiver storing the message encrypted
using the sender’s private key as a proof of having received the message. The NonRepudiation micro-
protocol simply stores the encrypted message in a file with a timestamp indicating when it was received. To
make it easier to check the authenticity of the stored message at a later time, a SecComm session should be
configured to use public key authentication as the first cryptographic method at the sender and thus, the last
cryptographic method at the receiver. Thus, if NonRepudiation is configured to execute just before message
authentication at the receiver, authenticity can be verified at some later time knowing only the sender’s
public key at the time the message was sent.

Attack prevention. Several SecComm micro-protocols address replay attacks and known plain text at-
tacks. To prevent accidental or malicious message replay, TimeReplayPrevention adds a timestamp to the
message at the sender, and then checks that value at the receiver to determine if it is too old. If the under-
lying communication protocol guarantees FIFO delivery, then the SeqReplayPrevention micro-protocol can
be used. It attaches a sequence number to each message and then verifies that the number in a new message
is larger than the largest sequence number seen so far. Both would typically be used in conjunction with
integrity or privacy methods to prevent undetected modification of the message.

Known plain text attacks can be made more difficult by inserting a random sequence of data at the

11



beginning of each message. The KPTAPrevention micro-protocol does this by inserting a message attribute
with a random contents to the message at the sender. The default packing routine of Cactus automatically
packs the message attributes before the message body, but if a different order is desired, a custom packing
routine can be developed.

All micro-protocols that detect a potential security problem with a message raise eventsecurityAlert
with the message and cause for the alert as arguments. The alert events will be handled by security audit
micro-protocols. Multiple options are possible here, ranging from logging the event or notifying users to
taking active steps to increase the security of a connection when an intrusion is suspected.

Key distribution and meta-security micro-protocols. The SecComm service includes key distribution
micro-protocols based on the Diffie-Hellman algorithms, as well as asymmetric key distribution algorithms
where either a client or a server creates a session key. Naturally, the latter schemes must use other predefined
keys to secure the key exchange. Other key distribution micro-protocols based on certification authorities
and Kerberos key distribution centers are planned.

The collection of meta-security micro-protocols includes MultiSec, which applies multiple basic security
protocols to a message sequentially, and AltSec, which applies alternating basic security protocols to a
message. Randomized versions of these micro-protocols apply the basic micro-protocols in random order,
but must include information identifying the order so that the receiver can correctly decode the message.
Even more complicated security protocols can be constructed by combining multiple meta-security micro-
protocols.

4.2 Performance.

The current prototype implements a subset of the micro-protocols presented in this paper, including privacy
micro-protocols based on DES, RSA, IDEA, Blowfish [Sch94b], and XOR, integrity micro-protocols based
on MD5 and SHA, an authentication micro-protocol based on DSA, a time-stamp based replay prevention
micro-protocol, and a non-repudiation micro-protocol. Other micro-protocols are currently being added.

We have conducted a number of preliminary experiments using different subsets of micro-protocols on
the MK 7.3 Pentium cluster mentioned above. Table 1 gives examples of roundtrip times in milliseconds
for passing 100-byte messages using different configurations. The average roundtrip times are determined
by measuring the time for 500 roundtrips and then dividing the result by 500. All SecComm configurations
were on IP, and the system was lightly loaded during testing. As baselines, an average roundtrip time directly
on IP was 3.30 ms. The cost over IP column indicates the roundtrip time overhead of the configuration
compared to roundtrip on IP. The cost over basic SecComm indicates the overhead of including the chosen
micro-protocol(s) versus a minimal SecComm with only a trivial micro-protocol that simply passes the
messages through untouched.

In these tests, DESPrivacy uses a 56-bit key running in CFB mode, BlowfishPrivacy uses a 448-bit key
running in CFB mode, XORPrivacy uses a 64-bit “key,” and IDEAPrivacy uses a 128-bit key running in
CFB mode. The NonRepudiation tested ensures that messages are written to disk before the message is
delivered to the next level. Other non-repudiation variants that allow delayed write to disk are naturally less
expensive. (Note: results from more experiments will be included in the final paper.)

The cost over basic SecComm gives the most realistic indication of the cost of combining multiple
micro-protocols. This column shows that in general, the cost of combining multiple micro-protocols is
less than or roughly equal to the sum of the corresponding micro-protocol costs. For example, the cost for

12



Configuration Roundtrip time Cost over IP Cost over basic SecComm
basic SecComm 4.06 0.76 n/a
XORPrivacy 4.27 0.97 0.21
DESPrivacy 7.24 3.94 3.18
XOR, DES 7.43 4.13 3.37
BlowfishPrivacy 5.72 2.42 1.66
DES, Blowfish 8.84 5.54 4.78
XOR, DES, Blowfish 9.24 5.94 5.18
IDEAPrivacy 8.30 5.00 4.24
XOR, DES, Blowfish, IDEA 13.23 9.93 9.17
MD5Integrity 6.04 2.74 1.98
SHAIntegrity 6.59 3.29 2.53
MD5, SHA 7.60 4.30 3.54
DES, MD5 8.69 5.39 4.63
NonRepudiation 58.58 55.28 54.52

Table 1: Roundtrip times (in ms)

combining DES and Blowfish is 4.78 ms, which is less than the sum of the corresponding costs of the single
micro-protocols. The cases where the cost is slightly greater than the sum of individual micro-protocols can
be attributed to measurement error since the interactions between different micro-protocols are very minimal
in these cases.

4.3 Configuration constraints and composibility

A number of factors must be considered when micro-protocols are combined into a custom instance of the
SecComm service. In particular, there are both algorithmic or property-based constraints that are indepen-
dent of a particular implementation, and implementation constraints that are specific to our Cactus-based
prototype. Algorithmic constraints are those that result from the inherent nature of properties being en-
forced or the algorithms used. For example, authenticity micro-protocols based on message digests require
that an integrity micro-protocol create the digest. Similarly, the non-repudiation micro-protocol requires
the use of an authenticity micro-protocol based on public keys. Finally, all micro-protocols that use a key
require either that the key is provided when the session is created or that a key distribution micro-protocol
is included.

Other algorithmic constraints affect the order in which various security algorithms are applied. For ex-
ample, all attack prevention micro-protocols should execute before privacy, integrity, or authenticity micro-
protocols at the sender to ensure that the mechanism used for attack prevention is protected from modifi-
cation. Similarly, non-repudiation micro-protocols should be executed immediately before authentication
at the receiver so that only the sender’s private key is required to later prove the message was sent by the
sender. Other ordering constraints have been identified elsewhere [AN96, AN95]. A related issue not ad-
dressed here but considered elsewhere is the actual effectiveness of multiple encryption and custom security
solutions [Bla99, MH81, Rit99, Sch94a, Sch99].

Implementation constraints are those that result from the specific design of the SecComm micro-protocols.
Compared with systems that support linear or hierarchical composition models, the non-hierarchical model

13



supported by Cactus introduces minimal implementation constraints on configurability. That is, with Cactus,
it is generally possible to implement independent service properties so that this independence is maintained
in the micro-protocol realization [Hil98]. When extra constraints do get imposed, it is usually because
making an extra assumption about which other micro-protocols are present significantly simplifies the im-
plementation.

In the current SecComm prototype, the only additional implementation constraint is that each integrity
and replay prevention micro-protocol can be used at most once in a given configuration. Thus, for example,
two instances of MD5Integrity cannot be used together, while MD5Integrity and SHAIntegrity can be. This
restriction results from the use of fixed message attribute names for each micro-protocol, which could be
avoided by dynamically assigning attribute names at startup time.

5 Related work

Related work can be divided into customizable security services based on configuration frameworks and
customizability in secure communication standards. A number of configuration frameworks have been used
to construct modular or configurable secure communication services including thex-kernel [OOSS94], En-
semble [RBH+98], and a Java implementation of the conduit model [NK98]. Each of these models allows
a communication subsystem to be constructed as a stack or directed graph of protocol objects, which allows
different security protocols be configured in arbitrary ways with respect to one another and other commu-
nication protocols. Thex-kernel framework was used to develop a modular implementation of Kerberos
as well as a suite of seven cryptographic protocols, including MD5, SHA, DES, RSA, DSS, and Diffie-
Hellman [OOSS94]. The Ensemble work augments normal group communication services with aSigning
Routermodule that provides integrity using keyed MD5, anEncryptmodule that provides privacy using
RC4, andExchangeandRekeymodules that establish an agreed group key using PGP for authentication
[RBH+98]. Finally, the conduit model is used for a modular implementations of the IPSec and ISAKMP
[MSST97] protocols [NK98].

The event-based model used in Cactus has a number of advantages compared with these hierarchical
models, or others such as System V Streams [Rit84] or Scout. One advantage is that it is more flexible. While
some combinations of security micro-protocols must be executed in a linear order for semantic reasons, our
meta-security micro-protocols are just one example of how this flexibility can be used advantageously. The
flexibility also provides a natural way of handling exceptional events such as key misses, dynamic key
changes, or detected security violations that do not correspond to the normal linear message flow.

Another advantage of Cactus is that it alleviates property composition problems that are inherent in
hierarchical models. When composing a collection of modules hierarchically into a subsystem, a property P
enforced by some module M is only guaranteed for the entire subsystem if all other modules executed after
M preserve P. Implementing modules to preserve other properties and keeping track of such preservation
relations can be difficult. Furthermore, with hierarchical composition, it is difficult to ensure the entire
collection of properties for new messages that may be generated by modules within the subsystem. In
Cactus, these problems are lessened since different micro-protocols cooperate within the composite protocol
to implement a service. Thus, a message that arrives at a composite protocol—or is generated within the
composite protocol—can only leave when the properties enforced by all the micro-protocols are satisfied.
The Cactus model allows such rich interactions, while providing mechanisms that maximize independence.

The Cactus model also provides an efficient composition framework since it avoids the per layer over-

14



head such as message demultiplexing associated with hierarchical models. Finally, Cactus does not force all
messages to flow through all modules. In particular, it is easy to raise specialized events based on message
type or the current system state, which are then fielded by only the required subset of micro-protocols.

As noted in the Introduction, customizability is supported in several recent communication security stan-
dards. For IPSec [KA98], the security option, AH or ESP, and the specific cryptographic algorithms and
keys used for a connection are specified in asecurity association(SA). A SA may be created manually
or negotiated using key management protocols such as IKE [HC98]. Multiple security methods may be
specified for a connection by giving multiple SAs, called aSA bundle[KA98]. TLS [DA99], as well as its
predecessor SSL [FKK96], offers two security layers. The lower level protocol, the TLS Record Protocol,
provides privacy (e.g., DES or RC4), integrity (e.g., keyed SHA or MD5), and optional message compres-
sion. A higher level TLS Handshake Protocol authenticates the communicating partners and negotiates
cryptographic algorithms and keys. The handshake protocol typically uses X.509 certificates to authenti-
cate the server and potentially the client. A number of key exchange options are supported. Similar types
of customization is provided in other Internet protocol proposals, including Privacy-Enhanced Mail (PEM)
[Lin93] and the Secure HyperText Transfer Protocol (S-HTTP) [RS98]. The Secure Electronic Marketplace
for Europe (SEMPER) proposal provides optional non-repudiation and anonymity for financial transactions
in addition to privacy, authenticity, and integrity [Sem99].

IPSec, TLS, and SecComm have a similar goal of customizable secure communication, but with dif-
ferent constraints on the solution and different approaches to achieving this goal. For example, TLS is
designed for communication between a client and server that do not have prior agreement on security con-
figuration. It also does not directly support multiple encryptions or multiple message digests, nor does it
provide non-repudiation. In addition, both IPSec and TLS are optimized for the case where a connection
is used to send a large number of messages rather than a few messages, which means that good perfor-
mance is “hard-wired” to be a high priority rather than something that can be customized in the context of
the performance/security tradeoff. Moreover, although IPSec is relatively flexible, the approach presented
in this paper offers a simpler design—for example, separate AH and ESP options and SA bundles are not
needed—with unlimited flexibility in combining security techniques. Similarly, it appears that our design
easily surpasses the flexibility of TLS.

Finally, note that IPSec and TLS are protocol specifications and therefore do not specify they must be
implemented internally. Our approach could be used to configure, in essence, an instance of SecComm
that is IPSec or TLS compliant. Of course, the message packing routines would have to be customized to
generate IPSec and TLS compliant message formats, but this can be done using the customization facili-
ties provided by the Cactus runtime system. Although IPSec and TLS can naturally be implemented in a
modular manner without using Cactus, the benefits of the approach become more prominent when arbitrary
combinations of methods are desired, when key distribution must be customizable, and, in particular, if the
security mechanisms must change adaptively at runtime.

6 Conclusions

The ability to customize security attributes at a fine-grain level allows users to pick the most appropriate
point along the security spectrum based on the characteristics of their particular application and security
environment. SecComm is a security service designed to support this type of customization for the com-
munication needs of networked applications. While similar in spirit to existing protocols such as IPSec and

15



TLS, SecComm goes beyond these to support more attributes and more variants, all within a flexible and
extensible implementation framework based on micro-protocols and events. The design also decouples to a
large extent the security aspects and the communication aspects of the problem. This allows, for example,
SecComm to be used with multiple transport protocols and at multiple locations in the protocol hierarchy
with little or no change. The current version of SecComm only provides the mechanisms for configura-
bility, the eventual goal is to add a configuration support tool that can enforce the various composability
constraints.

Once the prototype implementation is completed, we intend to experiment with the service in the context
of various applications, including a configurable distributed file system that is also being built using Cactus.
In addition, we will explore altering security attributes and techniques within the service dynamically using
the adaptive facilities provided by the system. Our ultimate goal is to use this fine-grain configurability and
fast adaptation ability as the basis for aninherently survivable system architecturethat can automatically
react to threats in the execution environment [HSUW00].

Acknowledgments

Gary Wong implemented the Cactus framework used for the SecComm implementation. He also provided
excellent comments and suggestions that improved the paper.

References

[AN95] R. Anderson and R. Needham. Robustness principles for public key protocols. InProceedings
of Crypto’95, pages 236–247, 1995.

[AN96] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.IEEE
Transactions on Software Engineering, 22(1):6–15, Jan 1996.

[BHSC98] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system for constructing
fine-grain configurable communication services.ACM Transactions on Computer Systems,
16(4):321–366, Nov 1998.

[Bla99] G. Blakley. Twenty years of cryptography in the open literature. InProceedings of the 1999
IEEE Symposium on Security and Privacy, pages 106–107, May 1999.

[CP97] C. Cowan and C. Pu. Immunix: Survivability through specialization. InProceedings of the
1997 Information Survivability Workshop, Feb 1997.

[DA99] T. Dierks and C. Allen. The TLS protocol, version 1.0. Request for Comments (Standards
Track) RFC 2246, Certicom, Jan 1999.

[DH76] W. Diffie and M. Hellman. New directions in cryptography.IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL protocol, version 3.0. Internet-draft, Netscape
Communications, Nov 1996.

[Gut98] P. Gutmann. Cryptlib. http://www.cs.auckland.ac.nz/�pgut001/cryptlib/, 1998.

16



[HC98] D. Harkins and D. Carrel. The internet key exchange (IKE). Request for Comments (Standards
Track) RFC 2409, Cisco Systems, Nov 1998.

[Hel78] M. Hellman. An overview of public-key cryptography.IEEE Transactions on Communica-
tions, 16(6):24–32, Nov 1978.

[Hil98] M. Hiltunen. Configuration management for highly-customizable software.IEE Proceedings:
Software, 145(5):180–188, Oct 1998.

[HP91] N. Hutchinson and L. Peterson. Thex-kernel: An architecture for implementing network
protocols.IEEE Transactions on Software Engineering, 17(1):64–76, Jan 1991.

[HS95] M. Hiltunen and R. Schlichting. Constructing a configurable group RPC service. InProceed-
ings of the 15th International Conference on Distributed Computing Systems, pages 288–295,
Vancouver, BC, Canada, May 1995.

[HS98] M. Hiltunen and R. Schlichting. A configurable membership service.IEEE Transactions on
Computers, 47(5):573–586, May 1998.

[HSH+99] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and R. Das. Real-time dependable chan-
nels: Customizing QoS attributes for distributed systems.IEEE Transactions on Parallel and
Distributed Systems, 10(6):600–612, Jun 1999.

[HSUW00] M. Hiltunen, R. Schlichting, C. Ugarte, and G. Wong. Survivability through customization
and adaptability: The Cactus approach. InDARPA Information Survivability Conference and
Exposition (DISCEX 2000), pages 294–307, Hilton Head, SC, Jan 2000.

[JJ98] N. Johnson and S. Jajodia. Exploring steganography: Seeing the unseen.IEEE Computer,
31(2):26i–34, Feb 1998.

[KA98] S. Kent and R. Atkinson. Security architecture for the internet protocol. Request for Comments
(Standards Track) RFC 2401, BBN Corp, Home Network, Nov 1998.

[Lin93] J. Linn. Privacy enhancement for internet electronic mail: Part I: Message encryption and
authentication procedures. Request for Comments RFC 1421, Feb 1993.

[MH81] R. Merkle and M. Hellman. On the security of multiple encryption.Communications of the
ACM, 24(7):465–467, Jul 1981.

[MMO+95] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, and T. Proebsting. Scout: a
communications-oriented operating system. InProceedings of the Hot OS, May 1995.

[MS95a] P. Metzger and W. Simpson. IP authentication using keyed MD5. Request for Comments RFC
1828, Piermont, Daydreamer, Aug 1995.

[MS95b] P. Metzger and W. Simpson. IP authentication using keyed SHA. Request for Comments RFC
1852, Piermont, Daydreamer, Sep 1995.

[MSST97] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet security association and key
management protocol (ISAKMP). Internet-draft, Internet Engineering Task Force, Jul 1997.

[NK98] P. Nikander and A. Karila. A Java Beans component architecture for cryptographic protocols.
In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, Jan 1998.

17



[NT94] B. Neuman and T. Ts’o. Kerberos: An authentication service for computer networks.IEEE
Communications Magazine, 32(9):33–38, Sep 1994.

[OMG98] Object Management Group.The Common Object Request Broker: Architecture and Specifica-
tion (Revision 2.2), Feb 1998.

[OOSS94] H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz. Paving the road to network security
or the value of small cobblestones. InProceedings of the 1994 Internet Society Symposium on
Network and Distributed System Security, Feb 1994.

[RBH+98] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev. The architecture and performance
of security protocols in the Ensemble group communication system. Technical Report TR98-
1703, Department of Computer Science, Cornell University, Dec 1998.

[Rey95] F. Reynolds. The OSF real-time micro-kernel. Technical report, OSF Research Institute, 1995.

[Rit84] D. M. Ritchie. A stream input-output system.AT&T Bell Laboratories Technical Journal,
63(8):311–324, Oct 1984.

[Rit99] T. Ritter. Cryptography: Is staying with the herd really best.IEEE Computer, 32(8):94–95,
Aug 1999.

[Riv92] R. Rivest. The MD5 message-digest algorithm. Request for Comments RFC 1321, MIT and
RSA Data Security, Inc., Apr 1992.

[RS98] E. Rescorla and A. Schiffman. The secure hypertext transfer protocol. Internet-draft, Terisa
Systems, Inc., Jun 1998.

[Sch94a] B. Schneier.Applied Cryptography. John Wiley & Sons, Inc., New York, 1994.

[Sch94b] B. Schneier. Description of a new variable-length key, 64-bit block cipher (Blowfish).Lecture
Notes in Computer Science, 809:191–204, 1994.

[Sch99] B. Schneier. Cryptography: The importance of not being different.IEEE Computer,
32(3):108–112, Mar 1999.

[Sem99] Semper Consortium. Advanced services, architecture and design.
http://www.semper.org/info/#D10, Mar 1999.

[SHA95] Secure Hash Standard. National Institute of Standards and Technology, U.S. Department of
Commerce, Washington, D.C., Apr 1995.

[SNS88] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An authentication service for open network
systems. InUSENIX Conference Proceedings, pages 191–202, Dallas, TX, Winter 1988.

[TMR96] F. Travostino, E. Menze, and F. Reynolds. Paths: Programming with system resources in
support of real-time distributed applications. InProceedings of the IEEE Workshop on Object-
Oriented Real-Time Dependable Systems, Feb 1996.

18


