Fast XML Document Filtering
by Sequencing Twig Patterns

JOONHO KWON

Advanced Institutes of Convergence Technology
PRAVEEN RAO

University of Missouri-Kansas City

BONGKI MOON

University of Arizona

and

SUKHO LEE

Seoul National University

XML-enabled publish-subscribe (pub-sub) systems have emerged as an increasingly important tool
for e-commerce and Internet applications. In a typical pub-sub system, subscribed users specify
their interests in a profile expressed in the XPath language. Each new data content is then matched
against the user profiles so that the content is delivered only to the interested subscribers. As the
number of subscribed users and their profiles can grow very large, the scalability of the service is
critical to the success of pub-sub systems. In this article, we propose a novel scalable filtering system
called iFiST that transforms user profiles of a twig pattern expressed in XPath into sequences using
the Priifer’s method. Consequently, instead of breaking a twig pattern into multiple linear paths and
matching them separately, iFiST performs holistic matching of twig patterns with each incoming
document in a bottom-up fashion. iFiST organizes the sequences into a dynamic hash-based index
for efficient filtering, and exploits the commonality among user profiles to enable shared processing
during the filtering phase. We demonstrate that the holistic matching approach reduces filtering
cost and memory consumption, thereby improving the scalability of iFiST.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Retrieval—Information filtering; H.3.4
[Information Storage and Retrieval]: Systems and Software—Performance evaluation (effi-
ciency and effectiveness); user profiles and alert services; 1.7.0 [Document and Text Processing]:
General

Authors’ addresses: J. Kwon, Advanced Institutes of Convergence Technology, Gyeonggi-do 443-
270, Korea; email: joonhokwon@gmail.com; P. Rao, Department of Computer Science Electrical
Engineering, University of Missouri-Kansas City, Kansas City, MO 64110; email: raopr@umkc.edu;
B. Moon, Department of Computer Science, University of Arizona, AZ, 85721; email: bkmoon@cs.
arizona.edu; S. Lee, School of Electrical Engineering and Computer Science, Seoul National Uni-
versity, Seoul 151-742, Korea; email: shlee@snu.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2009 ACM 1533-5399/2009/09-ART13 $10.00

DOI 10.1145/1592446.1592447 http://doi.acm.org/10.1145/1592446.1592447

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:2 o J. Kwon et al.

General Terms: Algorithms, Performance

Additional Key Words and Phrases: XML filtering, selective dissemination of information, twig
pattern, Priifer sequences

ACM Reference Format:

Kwon, J., Rao, P., Moon, B., and Lee, S. 2009. Fast XML document filtering by sequencing twig
patterns. ACM Trans. Internet Technol., 9, 4, Article 13 (September 2009), 51 pages.
DOI = 10.1145/1592446.1592447 http://doi.acm.org/10.1145/1592446.1592447

1. INTRODUCTION

Publish-subscribe (pub-sub) systems play an important role in e-commerce and
Internet applications by enabling selective dissemination of information. In a
typical pub-sub system, whenever new content is produced, it is selectively de-
livered to interested subscribers. Pub-sub systems have enabled new services
such as alerting and notification services for users interested in knowing about
the latest products in the market, current affairs, stock price changes, etc.,
on a variety of devices like mobile phones, PDAs, and desktops. Such services
necessitate the development of software systems that enable scalable and effi-
cient matching of a large number of items to deliver against a potentially large
number of subscribed users.

Nowadays, we come across many e-commerce sites that provide email notifi-
cations to subscribers about price changes and hot deals. For example, a recent
service by Google, called Google Alerts, provides email updates of the latest
news based on topics of choice to subscribed users. Users can choose to re-
ceive notifications by selecting a topic and providing a list of search keywords.
Another interesting example is the stock quote tracking service provided by
Yahoo. Evidently, there is a growing use and demand for large-scale systems for
selective information dissemination.

The popularity of the XML (eXtensible Markup Language) as a standard for
information exchange has triggered several research efforts to build scalable
XML filtering systems, where subscribers’ interests are stored in their profiles
typically expressed in the XPath language [Berglund et al.]. For example, a
path expression given in the XPath syntax book [author//name="John"]/title
qualifies XML documents for delivery by checking the occurrence of a pattern
composed of the four elements book, author, name, and title, and by checking a
value-based selection predicate name="John" in an XML document. Depending
on the presence of predicates in it (for example, [author//name="John"]), an
XPath expression can be considered a linear path or a structure of a twig
pattern.

Note that the problem of filtering XML documents is fundamentally differ-
ent from the problem of finding all occurrences of a twig pattern in an XML
document. This is due to the reversal in the roles of twig patterns and XML
documents. Informally, the filtering problem that we address in this article
is stated as follows. Given a set of XPath expressions, identify such XPath
expressions that match each of input XML documents to deliver. In an XML-
based pub-sub system, each incoming XML document is examined against user

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 13:3

XML document tree T

Query Q=/A/B/D XML document

supIRTERa
o

I TN

B B B B B B

| I I

D cC ¢ C Cc D
(a) (b)

Fig. 1. (a) Top-down processing and (b) an example.

XML document tree T
Query Q=/A/B/D XML document

(@) (b)

Fig. 2. (a) Bottom-up processing and (b) an example.

profiles represented by XPath expressions. The XML document is then deliv-
ered to users whose profiles were matched.

One of the key challenges in building such a system is to effectively organize a
large number of profiles in order to minimize the filtering cost and achieve good
scalability. For this purpose, various XML filtering systems have been proposed
[Altinel and Franklin 2000; Diao et al. 2003; Luddascher et al. 2002; Peng and
Chawathe 2003; Gupta and Suciu 2003; Chan et al. 2002a; Bruno et al. 2003].
Typically, XPath queries are processed in a top-down fashion. XML publish-
subscribe systems using a top-down approach evaluate XPath queries over XML
documents from the root to a leaf, as shown in Figure 1(a). Figure 1(b) shows a
scenario where the top-down approach is problematic. For simplicity, the XML
document has five linear root-to-leaf paths with A as the root, and the XPath
query contains only the parent-child relationships. The query is considered to
have a match in the document after processing five linear root-to-leaf paths in
the XML document.

A different perspective is to evaluate XPath queries in a bottom-up fashion.
They are evaluated from a leaf to the root, as shown in Figure 2(a). The bottom-
up approach benefits from the fact that selectivities of leaf nodes tend to be
high. As shown in Figure 2(b), only the last leaf-to-root path in the document
is processed during the filtering.

In this article, we propose a novel filtering system called iFiST (improved
FiST [Kwon et al. 2005]) that performs holistic matching of twig patterns with
each incoming XML document in a bottom-up manner. We do not address the
problem of efficiently delivering XML documents once the interested users are
identified.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:4 o J. Kwon et al.

The idea of holistic processing of twig patterns is not new. Bruno et al. [2002]
proposed a holistic twig join algorithm called TwigStack for finding all occur-
rences of a query pattern in an XML document. TwigStack is a holistic approach
because a query twig pattern is not decomposed into multiple root-to-leaf linear
paths and it processes each path individually to evaluate the results. PRIX [Rao
and Moon 2004] also adopts a holistic approach by sequencing XML documents
and query patterns. Holistic processing avoids the generation of unnecessary
intermediate results and improves performance. In an XML filtering system,
the notion of holistic processing can be defined similarly.

Definition 1. A filtering system supports holistic processing of user pro-
files/twig patterns if: (1) twig patterns are not decomposed into multiple root-
to-leaf paths and processed individually, and (2) there is no merging of interme-
diate results (generated by matching paths individually) to compute the final
answers.

Our filtering system iFiST matches user profiles in a holistic fashion by
matching a twig pattern as a whole unit during filtering rather than decompos-
ing it into linear paths. Our system adopts the idea of encoding XML documents
and user profiles into Priifer sequences. Priifer’s method provides a one-to-one
correspondence between labeled trees and sequences [Priifer 1918]. It has been
shown in the PRIX system [Rao and Moon 2004, 2006] that the tree-to-sequence
encoding supports efficient twig pattern matching. A collection of sequences
from user profiles are organized into a dynamic hash-based index, so that XML
documents are filtered against the user profiles efficiently during the two ba-
sic phases: subsequence matching followed by refinement. In the subsequence
matching phase, a superset of user profiles are identified that potentially match
an incoming document. In the refinement phase, false matches are discarded
by performing postprocessing for branch nodes in the twig patterns. Note that
the encoding of user profiles and the processing of XML documents are done in
a bottom-up manner (from leaf elements to the root element).

To further improve the efficiency and scalability, iFiST identifies user profiles
with similar interests and optimizes the filtering process by enabling shared
processing of user profiles with common patterns. As a result, both the mem-
ory requirements and filtering time of iFiST can be reduced. Our extensive
experimental study shows that the holistic matching approach enables iFiST
to outperform the state-of-the-art YFilter system by achieving superior scala-
bility, particularly when user profiles contain complex XPath expressions and
XML documents are heavily recursive and deep.

The iFiST system focuses on ordered twig pattern matching, which is essen-
tial for applications that are sensitive to the order between elements in XML
documents. XML documents are typically modeled as ordered labeled trees.
(Common XPath expressions do not specify the order between sibling nodes,
although the XPath standard provides a facility to do so.) Furthermore, each
input XML document is processed by the SAX Parser [Megginson] element-by-
element in document order.

Consider an XML pub-sub system for music objects [Chiu and Hsu 2006]
based on the MusicXML [MusicXML]. A user submits an XPath query which

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 13:5

expresses a sequence of notes such as “D F# A D A F# D” that he/she is inter-
ested in. In this case, his/her profile must be matched to only those MusicXML
documents containing the exact order of note sequences specified by the user.
Another example for ordered XML processing can be drawn from the linguistics
domain. In a linguistic data model proposed by Bow et al. [2003], interlinear
texts are represented in the XML format to analyze various linguistic prin-
ciples in different languages. Due to the requirements of linguistic analysis,
it is essential to preserve order between the words in the text [Lewis, per-
sonal communication], and there is a compelling need for ordered twig pattern
matching. Besides, language treebanks have been widely used in computational
linguistics because treebanks capture syntactic structure of text data and pro-
vide a hierarchical representation of text by breaking them into syntactic units
such as noun clauses, verbs, adjectives, and so on. A recent paper by Miiller
[2004] used ordered pattern matching over treebanks for question answering
systems. In this work, we focus on efficient and scalable filtering of ordered
twig patterns. Unordered twig pattern matching will be investigated in the
future.

Our iFiST system is an extension of FiST [Kwon et al. 2005] and aims to
further improve the filtering performance by exploiting commonality in user
profiles. Thus iFiST performs shared processing of user profiles to reduce the
filtering time and memory consumption. Similar to FiST, iFiST has two phases,
namely, progressive subsequence matching followed by a refinement phase for
branch node verification. Like FiST, iFiST is free from false positives or false
dismissals. Our iFiST system requires additional data structures to support
shared processing. Further, it supports insertion and deletion of user profiles
from the system.

The key contributions of this work are summarized as follows.

—iFiST exploits commonality among user profiles, and supports shared pro-
cessing during filtering. As a result, both the storage cost for indexing user
profiles and the filtering time can be reduced.

—Since iFiST is an extension of FiST, it also supports holistic matching of
twig patterns against incoming XML documents in a bottom-up fashion and
provides ordered twig matching for applications that require the nodes in a
twig pattern to follow the document order in XML.

—We provide a comprehensive solution for processing “*” wildcard. Leaf and
regular wildcards are processed by adding the wildcard information to our
data structures and checking this information during subsequence matching.
Branch wildcards are processed by modifying the stack comparison operation
during subsequence matching.

—We report results from a comprehensive set of experiments carried out to
evaluate the scalability of iFiST in comparison with YFilter with datasets
having different characteristics. The effectiveness of shared processing of
iFiST is evaluated in terms of filtering cost and memory consumption with
and without shared processing. We also compared the memory consumption
of iFiST with YFilter.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:6 o J. Kwon et al.

The remainder of this article is organized as follows. A survey of related
work is presented in Section 2. We present the overview of the iFiST system
in Section 3. In Section 4, we describe the basic filtering algorithm in iFiST.
In Section 5, we present optimizations to our filtering algorithm. Section 6
discusses the processing of wildcards in user profiles. Section 7 discusses our
experimental results. We conclude our work in Section 8.

2. RELATED WORK

In this section, we first review previous research on publish-subscribe systems
and then describe prior work on XML filtering systems.

2.1 Publish-Subscribe Systems

A variety of publish-subscribe systems have been developed. They can be
broadly classified into three categories: (1) topic-based systems, (2) predicate-
based systems, and (3) XML-based systems.

A number of topic-based systems have been proposed [Castro et al. 2002;
Ramasubramanian et al. 2006; Milo et al. 2007]. In these systems, publishers
and subscribers are connected together by a predefined topic. Scribe [Castro
et al. 2002] is a standard topic-based system for managing topics, topic-clusters,
and user subscriptions. Corona [Ramasubramanian et al. 2006] is a topic-based
system for detecting and disseminating Web page updates. The Tamara [Milo
et al. 2007] system minimizes the maintenance overhead for topics during the
dissemination of events based on a distributed clustering algorithm. Our system
is more flexible because users are allowed to specify their own interests as
opposed to being restricted by predefined topics.

A number of predicate-based pub-sub systems have been developed. In the
content-based network [Carzaniga et al. 2004], an input document is structured
as a set of attribute/value pairs and a user profile is expressed as a disjunction of
conjunctions of constraints on attributes. As compared to an XML-based system,
this system allows a limited form of expressing user interests. Chandramouli
et al. [2007] proposed techniques for scalable processing and dissemination
of a large number of subscriptions with value-based notification conditions.
However, the subscriptions track the value of the same data item over time and
their system does not deal with XML.

Much research has been done in XML-based publish-subscribe systems [Diao
et al. 2004; Chan and Ni 2007; Hong et al. 2007]. The ONYX [Diao et al. 2004]
system is a large-scale dissemination system that delivers XML messages based
on user profiles. A piggyback optimization [Chan and Ni 2007] was proposed
for optimizing the performance of content-based dissemination of XML data.
However, only a subset of XPath expressions that contain parent-child (“/”) and
ancestor-descendant (“//”) axes are supported. The Massive Multi-Query Join
Processing (MMQJP) technique [Hong et al. 2007] was proposed for dealing with
a large number of interdocument queries. Interdocument queries join different
XML documents based on the values in their nodes, either attributes or text.
They proposed the XML Stream Conjunctive Language (XSCL) which consists
of three clauses, namely, SELECT, FROM, and PUBLISH.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 137

Delivering a matched document to a group of interested users is an impor-
tant problem in a publish-subscribe system. Much research has been conducted
in this regard [Carzaniga et al. 2004; Shah et al. 2004; Fenner and Srivastava
2005; Rao et al. 2007; Li et al. 2008; Miliaraki et al. 2008]. In the content-based
network [Carzaniga et al. 2004], packets are forwarded based on their data con-
tents rather than IP addresses. Multicast allows a source to send the same con-
tent to multiple receivers. CBM [Shah et al. 2004] is a content-based multicast
scheme to reduce network bandwidth usage and delivery delay by considering
semantics of the information in the multicast process. Overlay networks provide
application-layer routing. ONYX [Diao et al. 2004] is based on an overlay net-
work and uses a source-based tree for publishing new data. XTreeNet [Fenner
and Srivastava 2005] is also based on the overlay network and similar to ONYX.
The main difference is that intermediate routers in XTreeNet only forward
data items. NetX [Rao et al. 2007] adopts a novel XML indexing scheme on
top of a distributed hash table to implement a content-based matching. The
advertisement-based routing algorithm for optimizing content-based routing
for XML contents was recently proposed [Li et al. 2008]. However, only linear
XPath expressions are handled in this work. Miliaraki et al. [2008] proposed a
distributed implementation of YFilter [Diao et al. 2003] on top of Distributed
Hash Tables (DHTs) for XML data dissemination.

The matching process is an essential step to deliver the right content to users.
Thus we focus on the matching process in this work.

2.2 XML Filtering Systems

The popularity of extensible markup language XML as a standard for infor-
mation exchange has triggered several research efforts to build scalable XML
filtering systems. The proposed approaches can be broadly classified into three
categories: (1) automaton-based approaches, (2) index-based approaches, and
(3) others.

Most previous approaches were based on constructing automaton represen-
tations for the user profiles. XFilter [Altinel and Franklin 2000] is one of the
early works on XML filtering. XFilter takes linear XPath expressions and trans-
forms each expression into a single Finite State Machine (FSM). The collection
of FSMs are indexed to support efficient filtering. YFilter [Diao et al. 2003] is
an extension of XFilter and adopts a nondeterministic Finite Automata (NFA)-
based approach to improve the scalability of the filtering system by promoting
shared processing of XPath expressions. YFilter handles XPath expressions
of a twig pattern by decomposing them into individual linear paths, match-
ing the linear paths individually, and then performing postprocessing over
matches from the linear paths. For example, consider a nested XPath expression
book [author//name] /title. YFilter splits the pattern and indexes two linear
path expressions in its NFA, namely book/title and book/author//name. A
postprocessing phase is used to check whether an entire query expression has
been matched or not. YFilter uses NFA to reduce the number of automaton
states, whereas the lazy DFA [Green et al. 2003, 2004] approach uses DFA,
which is constructed lazily to reduce active states for deep and recursive XML

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:8 o J. Kwon et al.

data. To improve the cache performance as well as overall performance of the
XML filtering system, the cache-conscious automata model was studied [He
et al. 2005, 2006]. XML documents are processed in a top-down fashion from
the root element to a leaf element.

There has been work on XML filtering using automata with buffers.
XSM [Luddscher et al. 2002] adopted a transducer-based approach and used a
subset of XQuery as the query language. To handle a subset of XQuery prop-
erly, the authors introduced the use of internal buffers. However, one of the
disadvantages is that XSM does not support the “//” axis. XPush [Gupta and
Suciu 2003] proposed the use of a modified deterministic pushdown automa-
ton to simulate the execution of XPath filters and can handle predicates. A
drawback of the approach is the difficulty in adding or deleting queries from
the constructed automaton. XSQ [Peng and Chawathe 2003] handles multiple
predicates, closures, and aggregations by using a hierarchical network of push-
down transducers augmented with buffers. However, XSQ evaluates only one
XPath expression at a time.

A trie-based data structure, called XTrie [Chan et al. 2002b], was proposed
to support filtering of complex twig patterns. XTrie consists of two components:
(1) a trie constructed from a set of distinct substrings and (2) a substring-
table for storing information about each substring in a twig pattern. XTrie
breaks a twig into several substrings if “//” or “*” appear. XTrie’s substrings
contain only “/” axis. XTrie will have a large number of fragments when “//” or
“” occur frequently in the twig patterns. In addition, XTrie is not a holistic
approach according to Definition 1. Bruno et al. [2003] studied index-based
and navigation-based XML multiquery processing and showed both techniques
have their own advantages. However, their work considers only a set of simple
path expressions which do not contain predicates.

In the final category, there are several approaches. Tian et al. [2004] proposed
the use of a relational database system for an XML-based publish/subscribe
system. The XML filtering problem is turned into a join query that evaluates
both the value predicate part and the tree structure part of the pattern which
are both stored in relational tables. The main problem with this method is that
the number of joins increases with the size of query. Gong et al. [2005] conducted
research on a Bloom filter-based XML filtering system. An XML query is taken
as query string and all query strings are mapped into a Bloom filter by hash
functions. However, their work does not consider a twig pattern query. More
recently, a predicate-based filtering [Hou and Jacobsen 2006], AFilter [Candan
et al. 2006], and BoXFilter [Moro et al. 2007] were proposed. The predicate-
based filtering system [Hou and Jacobsen 2006] encodes XPath expressions as
ordered sets of predicates such that the common parts among XPath expressions
will be stored in a predicate index. AFilter [Candan et al. 2006] can exploit
prefix and suffix commonalities in the set of XPath expressions. However, it
does not support twig pattern queries. BoXFilter [Moro et al. 2007] is similar
to our work and it also uses bottom-up approach based on sequencing the twig
patterns using Prifer sequences. It introduces the idea of early pruning by
grouping sequences into envelopes.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 13:9

Path = RelLocationPath | AbsLocationPath
AbsLocationPath := '/' RelLocationPath

RelLocationPath := Step '/' RelLocationPath | Step

Step = Axis NodeTest | Step '[' Predicate 7'
Axis = 7 e

NodeTest = String | *

Predicate = Expression | Expression'='Expression
Expression = String | Path

. 3. Grammar of XPath subset.

=
()

Several XPath streaming engines have been proposed [Bar-Yossefet al. 2004,
2005; Chen et al. 2006b]. XSM and XSQ can be regarded as streaming engines.
Bar-Yossef et al. [2004, 2005] investigated the space complexity of XPath eval-
uation on XML streams and provided space lower bounds of XPath evaluation
without wildcards when buffering is required. TwigM [Chen et al. 2006b] uses
a stack representation of data to achieve a complexity which is polynomial in
the size of the data and query. However, these approaches focus on processing
a single XPath expression at a time.

Our iFiST system is a holistic XML filtering system and uses a sequence
representation for twig patterns. These sequence representations are indexed
for efficient filtering. Further, shared regions of sequences are identified and
processed together to reduce the storage cost and filtering time.

3. OVERVIEW OF THE IFIST SYSTEM

In this section, we briefly describe the XPath language and the basic data model
of XML data for the iFiST system. Then we formally present the filtering prob-
lem that we address in this article. We also provide an architectural overview
of the iFiST system and briefly describe its core components. We then describe
the construction of Priifer sequences for XML document trees.

3.1 XPath and Data Model

The XPath language [Berglund et al.] defines expressions for addressing parts
of an XML document and is also used as a building block for XSLT [Clark 1999]
and XQuery [Boag et al.] languages. The iFiST system uses a subset of XPath to
express user profiles. Figure 3 shows this subset of XPath handled in this work.
The subset contains elements, attributes, wildcards, and child and descendant
axis. Evaluating value-based predicates in user profiles during filtering has
been addressed in other papers of ours [Kwon et al. 2007, 2008].

XML documents are typically modeled as ordered labeled trees. For example,
the XML document in Figure 4(a) can be represented as an ordered labeled tree
as shown in Figure 4(b). Each node in a tree corresponds to an element or a
value. Values are represented by character data (CDATA, PCDATA) and appear at
the leaf nodes. The tree edges represent a relationship between two elements
or between an element and a value. Each element can have a list of (attribute,
value) pairs associated with it. In this article, attributes are treated the same

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:10 o J. Kwon et al.

<A>
B> (A13)
<D>v, </D>
<E> v, </BE>
 (B.5) (E,12)
<E>
<G> v, </G> / \ / | \
<F> v, </F> (D2) (E4) (G,7) (F.9) (F,11)
Vs I
</E>
 (Vpl) (V2,3) (V3,6) (V4a8) (V5,10)
(a) XML document (b) tree representation

Fig. 4. A sample XML document.

way as elements. Hence, no special distinction will be made between elements
and attributes in the subsequent discussions.

3.2 XML Document Filtering

The filtering problem is different from the task of finding all occurrences of
a twig pattern in an XML database. In traditional XML indexing and query
processing, XML documents are indexed to quickly find all occurrences of a
twig pattern (for example, XISS [Li and Moon 2001], TwigStack [Bruno et al.
2002], PRIX [Rao and Moon 2006, 2004]). However, in XML filtering, the roles
of twig patterns and documents are reversed. It is the twig patterns that are
indexed in order to quickly determine whether those twigs appear in an input
document to be filtered. Note that the idea of reversed roles of queries and
data is based on the SITF system [Yan and Garcia-Molina 1999]. Formally the
problem of XML document filtering can be stated as follows.

Given a set @ of XPath queries and an input XML document D, find a subset
) C /Q such that D contains one or more matching occurrences of g for any

geq.

In this article, we focus on ordered matches, where the ordering of twig pattern
nodes should match the document order.

3.3 Architectural Overview

The architectural overview of iFiST is shown in Figure 5. The core filtering
engine is shown in a dotted box. User profiles expressed in XPath are parsed
by an XPath parser and converted into Profile sequences based on the Priifer’s
method. (See Section 3.4 for the description of the Priifer sequence construc-
tion.) The collection of sequences are stored in a hash-based dynamic index
called the sequence index. iFiST exploits commonality among user profiles by
examining the profile sequences for similar regions. Similar regions of user
profiles are identified and stored in an optimized way: The profile sequences
are stored in a segment table. We will delve into the details pertaining to the
index construction and maintenance in Section 4. User profiles can be updated
during the execution of the filtering engine.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J 13:11

XPath Twig

XML
patterns
(User profiles) Document
[XPath parser] [SAX parser]
Prufer Prufer
Sequences Sequence
Sequence Index Filtering Matching Send
¥ Algorithm filtered
Profile Sequences 8 user profiles | document
Filtering engine Users

Fig. 5. Architecture overview.

Incoming XML documents that need to be filtered are first parsed using a
SAX parser [Megginson]. The SAX parser generates a start tag event for each
opening tag of an element and an end tag event for each closing tag of an
element. The filtering engine progressively constructs the Priifer sequence rep-
resentation of the document and performs certain operations on these events.
With this high-level overview of the iFiST system, we shall move on to explain
the Priifer sequence construction.

3.4 Prifer Sequences for Labeled Trees

Priifer [1918] proposed a method that constructed a one-to-one correspondence
between a labeled tree and a sequence by removing nodes from the tree one at
a time. The algorithm to construct a sequence from tree 7T}, with n nodes labeled
from 1 to n works as follows. From T, delete a leaf with the smallest label to
form a smaller tree 7;,_1. Let a; denote the label of the node that was the parent
of the deleted node. Repeat this process on T,_1 to determine as (the parent of
the next node to be deleted), and continue until only two nodes joined by an
edge are left. The sequence (a1, as, as, ... ,a, 2) is called the Priifer sequence
of tree T),. From the sequence (a1, ag,as, ... ,a,_2), the original tree T}, can be
reconstructed. The length of the Priifer sequence of tree T}, is n — 2. Similar to
the PRIX system [Rao and Moon 2004, 2006], we construct a Priifer sequence
of length n — 1 for T}, by continuing the deletion of nodes until only one node is
left.

The Labeled Priifer Sequence (LPS) of an XML document tree is obtained
by replacing the node numbers in the sequence with XML tags [Rao and Moon
2004]. Extended Priifer sequences can be constructed by extending leaf nodes
of the document tree with dummy child nodes. As result, the leaf node labels
of the original tree appear in the LPS. The following example illustrates the
sequence representation for an XML document tree.

Example 1. Consider the XML document tree in Figure 4(b). The nodes of
the tree are labeled in postorder. The Prifer sequence of the tree using the node

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:12 o J. Kwon et al.

A
X
B E

D G F
Twig Pattern Q;: /A[B//D]//E[G]/F
LPS(Q)=DBAGEFEA

Fig. 6. Twig pattern to sequence conversion.

numbersis 254513712912 11 12 13. The LPS of thistreeis DBEB A GE
FE FE A. By extending the leaf nodes of the document tree with dummy child
nodes vy through vs, the extended LPS can be constructed and isv;y D Bvy E B
AvsGEvsFEuv; FE A.

The iFiST system adopts the idea of encoding XML documents and user pro-
files into Priifer sequences. The use of Priifer sequences for indexing and query-
ing XML data has been studied and evaluated in the PRIX system [Rao and
Moon 2004, 2006]. Priifer’s method provides both the iFiST and PRIX systems
with a mechanism that transforms XML documents and queries into sequences.
However, since iFiST performs filtering against queries while a document is be-
ing parsed, the sequence representation of user profiles is somewhat different
from the sequence representation adopted by PRIX. (See Section 4.)

4. INDEX STRUCTURE AND FILTERING ALGORITHM

With the high-level overview of the iFiST system presented in the previous
section, we now describe the index structure and the basic filtering algorithm of
iFiST. We will then present a few optimizations to speed up the filtering process
in the following sections. Hereinafter, we will use the terms “user profiles” and
“twig patterns” interchangeably.

4.1 Transforming User Profiles into Sequences

In the iFiST system, user profiles expressed in XPath are transformed into
Priifer sequences. The twig patterns we deal with have either a parent-child
relationship (“/”) or ancestor-descendant (“//”) relationship between two nodes.
This section describes the method to map twig patterns into sequences. For
now, let us consider patterns without a wildcard “*”. Later, in Section 6, we will
describe how the wildcard can be handled.

When a twig pattern is mapped to a sequence, both “/” and “//” axes in the
twig pattern are treated as a regular tree edge with no distinction between
them. For example, consider the tree representation of a twig pattern @; in
Figure 6. If @1 is mapped to a sequence, its extended LPS will be D B A G
E F E A. Then, such information as the type of an axis between nodes (ei-
ther parent-child or ancestor-descendant) and branch node is associated with
each node in the sequence. In particular, the node relationship information
is stored in child (or descendant) nodes. This sequence of nodes annotated
with such information is called a profile sequence. (See Figure 7(a) for an
illustration.)

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:13

Q, :/AIB//DV/EIGI/F LPS(Q)=DBAGEFEA
Label—1 D | B | A |G|E | F|E|A
Qd [— 1 |1 |1 |1 |1 |1 |1]1
Pos — 1 | 2|3 |45]|6]|7]8
Sym |[— / | /| s | /| S|/ |S/]|s#
Q,://BIEN/C LPS(Q)=EBCB)
ElBlc]|B key lists
2 2 2 2 m
12|34 Qi ,
/ /| s#
ANAE

(a) profile sequence (b) sequence index
) D B A G E F E A
A O—=O—O—O—O—O—0O—C—O
E B C B
% O—O—0O—0O—0O
(c) simplified state machine

Fig. 7. Profile sequence, sequence index, and state machine.

Table I. Node Information

| Attribute | Description |
Label a Priifer sequence label (i.e., XML tag)
Qid a unique identifier of a user profile
Pos an ordinal number that represents the position of a node
in the profile sequence
Sym a set of values that describe the type of a sequence node:
L or I/, $’ for a branch node, ‘# for a root node

Each node in the profile sequence has four attributes, namely Label, Qid,
Pos, and Sym. These attributes are summarized in Table I. The attribute Label
stores the Priifer sequence label, Qid contains an unique identifier, Pos denotes
the position of the node in the profile sequence, and Sym stores a combination
of values listed in the table. Given a node ¢ in the profile sequence, the four
attributes are denoted by qraser, 9gid; 9pos, and gsym, respectively.

Example 2. Figure 7(a) shows two profile sequences for the twig patterns
@1 and @, where LPS’sare DBAGE FE A and E B C B, respectively. So there
are eight nodes in the profile sequence of @1 and four nodes in that of @4. The
relationships are stored in the Sym attribute of each node in a profile sequence.
For example, in the profile sequence of @1, the Sym attribute of node D has
the value “//” because the first node D and the second node B have an ancestor-
descendant relationship in @;. @1 has two branch nodes A and E which have
two child nodes each. Hence the third, fifth, seventh, and eighth nodes in the
profile sequence of @1 have $ in their Sym attribute. Note that some branch
nodes have two symbol values at the same time. For example, in the profile
sequence of @1, the seventh node with Label E has an ancestor-descendant
relationship with the eighth node representing node A in @;. Hence its Sym

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:14 o J. Kwon et al.

attribute has values “$” and “//”. The last node in the profile sequence always
corresponds to the root of the twig pattern. We call this node as the root node
of the profile sequence. The Sym attribute of this node has value “#”.

4.2 Indexing User Profiles

Given that the number of user profiles that need to be matched against in-
coming XML documents can presumably grow very large, it is critical that a
good indexing strategy be developed for efficient and scalable filtering. In this
section, we propose an index structure to store the profile sequences.

Conceptually, the first phase of the filtering algorithm in iFiST involves sub-
sequence matching between profile sequences and the sequence representation
of an input document to find the superset of twig patterns that match the input
document. The following theorem states the relationship between the profile
sequence of a twig pattern and the sequence representation of an XML docu-
ment.

TuEOREM 1 [RA0 AND Moon 2004]. If tree @ is a subgraph of tree T, then
LPS(Q) is a subsequence of LPS(T).

The nodes in a profile sequence can be mapped to a state machine. (See
Figure 7(c).) This figure is a simplified illustration since the actual state ma-
chine has more transitions and is not shown here for the purpose of clarity.
As new tags in the input document are parsed, the state machine undergoes
appropriate transitions. If the state machine reaches the final state, the profile
sequence has a subsequence match in the document sequence. For efficient fil-
tering, however, it is desired to perform subsequence matching on all the profile
sequences simultaneously. To do so, we maintain a dynamic hash-based index
called sequence index.

The sequence index is built over profile sequences. The Label of a sequence
node is used as a key in the hash table. With each key in the index, a list of
nodes from profile sequences that need to be matched next is associated. At the
parsing time, the front nodes of the profile sequences are added to the sequence
index. Both the key and nodes in the lists of a key are updated dynamically
during the subsequence matching phase. When a new Priifer sequence label of
an input XML document is generated during the subsequence matching phase,
the nodes in the list corresponding to the label are examined to carry out nec-
essary state transitions. On a successful state transition, the next nodes in the
corresponding sequences cause the updates of the sequence index. First, we
check whether the label of next node is existed in the sequence index. If the
label is existed as a key, the next node is just copied to the lists in the sequence
index on the label. Otherwise, the new key is generated in the sequence index
using the label and the next node is the first node of the lists on the key.

In a typical pub-sub environment, it is natural for several users to share
similar interests. Identifying similar profiles can help us reduce the document
filtering cost and storage cost for indexing user profiles. For ease of exposition,
we first describe the data structures and the basic filtering algorithm in iFiST
without any sharing among user profiles. Later, in Section 5.2, we build on the

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:15

Algorithm 1. SAX Handlers

stack S; /* a runtime global stack */
procedure StartTagHandler(tag)

1: S.push(tag)

end

procedure EndTagHandler(tag)

2: if tag is a leaf node then

3: FindSubsequence (S.top()); /* for extended Priifer sequences */
endif

4: S.pop();

5: FindSubsequence (S.top());

end

basic filtering algorithm and extend the data structures to support shared pro-
cessing in iFiST.

Example 3. A sequence index is shown in Figure 7(b). It can be observed
that the sequence index contains the first node of profile sequences for patterns
@1 and @, for hash keys D and E, respectively.

4.3 Basic Filtering Algorithm

The basic filtering algorithm carries out progressive subsequence matching fol-
lowed by a refinement phase for branch node verification. Theorem 1 is a nec-
essary but not a sufficient condition. In the subsequence matching phase, the
filtering algorithm performs additional tests to eliminate most false matches.
For a given a profile sequence node q, the nature of the test depends on the
value of ggsyn,. To facilitate these tests, a runtime global stack is maintained
by our filtering algorithm that stores the tags along the path from the current
tag being processed to the root of the document. The elements are pushed to
and popped from the global stack in document traversal order. Note that the
maximum depth of the stack is no more than the maximum height of input
documents.

4.3.1 Progressive Subsequence Matching. It is essential that we find the
subsequence matches simultaneously for all the profile sequences in a scalable
manner. We call the subsequence matching progressive because we generate
the sequence representation of the document incrementally and find match-
ing profile sequences in steps. The LPS of an XML document is constructed
incrementally by examining the runtime global stack as the document is be-
ing parsed. To parse input XML documents, iFiST uses a SAX parser with a
few modifications made to the StartTagHandler and EndTagHandler procedures.
Algorithm 1 shows the StartTagHandler and the EndTagHandler procedures.
When the StartTagHandler is invoked with a tag name, the tag name is pushed
onto the stack as shown in line 1. When the EndTagHandler is invoked, the el-
ement tag is checked if it is a leaf node in the document. If it is a leaf node,
the top element of the stack is used as the next Priifer sequence label and the

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:16 o J. Kwon et al.

A
0 /’\
- : B B E
D |
3 B B E B 3
| /\ /N |
: A !
A ! ' D E C G F F
D E C G F F Stack i :
Stack
XML document tree T XML document tree T
LPS(T): DB EBA CBA GE FE FEA LPS(T): DB EBA CBA GE FE FEA
(a) EndTagHandler of D (b) EndTagHandler of E

Fig. 8. Generation of LPS(T).

filtering procedure (FindSubsequence(-)) is invoked, because a leaf node is con-
sidered to have a dummy child node for the purpose of producing an extended
LPS instead of a regular LPS (lines 2 to 3). Whether the tag is a leaf or not,
the top element is popped from the stack and the new top element is used as
the next Priifer sequence label (line 4). The filtering procedure is again invoked
(line 5).

Example 4. Weillustrate the construction of the LPS of the XML document
tree T as shown in Figure 8. For this document LPS(T) is DBEBACBAGEFE-
FEA. When the StartTagHandler(-) of an element is invoked, the element is
pushed onto the stack. When the EndTagHandler(-) of D is invoked, the state
of the stack is shown in Figure 8(a). Element D is a leaf node in T. So the top
element in the stack represents the 1% label of LPS(T). The top element D is
then popped from the stack. As a result, the new top element B in the stack
represents the 2"¢ label of LPS(T). Note that element B is still kept in the stack
after it is used. When the EndTagHandler(-) of E (child of B) is called, the state
of the stack is shown in Figure 8(b). E is also a leaf node in T. Hence the top
element E in the stack represents the the 3’¢ label of LPS(T). Then, the top
element of the stack is popped. After this, the new top element B in the stack
represent the 4" label of LPS(T). Subsequently when the EndTagHandler of
B is invoked, B and A are the two elements in the stack. Since element B is
not a leaf node in the XML document tree T, the top element in the stack is
popped. The new top element A in the stack represents the 5 label of LPS(T).
The preceding process is repeated until the EndTagHandler of the root element
(i.e., A) is invoked.

Each time the EndTagHandler(-) is invoked, the top element of the stack indi-
cates the i*” element of the LPS of the document. The filtering algorithm relies
on the sequence index to find all matching subsequences simultaneously for all
the profile sequences. Note that the elements of an input XML document are
popped out of the runtime stack by EndTagHandler in the same order as they
appear in the LPS of the document. As a result, it is feasible to generate the
LPS of an input XML document incrementally just by scanning the document
only once without actually storing the entire document in memory.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J 13:17

Algorithm 2. Progressive Subsequence Matching

Input: {L} - L is a Priifer sequence label;

procedure FindSubsequence(L)
1: CurrentList < Sequencelndex[L];

2: foreach SequenceNode q in CurrentList do
3: test — false;

4 foreach value v in gsym do

5

switch v do
/* Parent-Child or Ancestor-Descendant relationship */
6: case ‘/ or ‘//’:
7 if doSimpleStackTest (q,v) = true then test «— true;
/* Branch node */
8: case ‘$’: doBranch (g);
/* Root node of twig pattern */
9: case ‘#’:
BranchNodeVerification (ggid);
endsw
endfch
10: if ((gsym = /" or gsym = °//’) and (test = true)) or (gsym = ‘4’) then
11: qd — NextNode(q);
12: copy ql to Sequence Index using key q/Label;
endif
endfch
end

During the subsequence matching phase, iFiST performs additional tests to
eliminate most false matches by using the runtime stack. The runtime stack
allows parent-child and ancestor-descendant relationships to be tested dur-
ing this phase. (Other benefits of the stack will be presented in Section 5.)
In essence, transitions occur in a state machine (e.g., Figure 7(c)) when the
tag name is matched and the stack test succeeds. The core filtering operations
are shown in Algorithm 2. The procedure FindSubsequence(-) is invoked from
EndTagHandler(-). Using the label L as a key, the sequence index is searched
to obtain the list of nodes to be tested (line 1). For each node g in the list, an
appropriate action is taken depending on the values in ggy,, (lines 6 through 9).
Note that since ggy», is a list of values, we iterate through each value in line 4.

Processing Parent-Child and Ancestor-Descendant Axes. The runtime stack
is used to test parent-child and ancestor-descendant relationships for a pair of
document elements that match the nodes in the profile sequences.

Let TestPC(.) (parent-child) and TestAD(-) (ancestor-descendant) refer to
these two tests. These tests differ in the extent to which the stack is checked.
Consider twonodes g and ¢' = NextNode(q) in a profile sequence. TestPC(q, q') is
successful, if q’Label is immediately below g7 in the stack. On the other hand,
TestAD(q) is successful, if q/Label occurs somewhere below gr.p; in the stack.
Whenever such a test is successful, the state machine can move to the next state.

For example, in Figure 9, when EndTagHandler is called for E, the state
of the stack is shown on the left. The j!* element in the profile sequence for ;

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:18 o J. Kwon et al.

XML Document T Twig pattern Q; LPS(Q;): ... ECBF...

A ..|E|C|B|F B
B [*1 N NEEERERE I
D B ..B .. UTR I I O /A I N /\\ I
C \ \ A AERN .. EF
B c c
A | Sequence Index

b]
stack ‘

=)

i
i

LPS(T):... EDCBA..CBA ...

&l
&
e
s
&

Fig. 9. Testing parent-child and ancestor-descendant relationships.

Algorithm 3. Simple Stack Checking

Input: ¢ is a node in the profile sequence;

v is a value in the Sym attribute of ¢
procedure doSimpleStackTest(q, v)

1: ¢ — NextNode(q);
2: if (v = ¢/’ and TestPC(q, q/) is successful) OR
(v="*"/"and TestAD(q,q/) is successful) then

3: return true;
4: else return false;

matches the top of the stack (i.e., the Label of @; ; is E). Since the Sym value
of the j** element is “/”, we apply TestAD(Q;. j» @i j+1). Since element C is
two elements below E in the stack, TestAD(-) is successful. This means that the
ancestor-descendant relationship between nodes @; ;1 and @; ; in the twig pat-
tern in Figure 9 is satisfied in the document T. Next we attempt to match @; ;1.
Element C in the stack matches @; ;1. Besides, element B is one element below
C in the stack. This means that the parent-child relationship between nodes
Q; j+2 and Q; ;1 is satisfied in the document T, that is, TestPC(-) is successful.
Note the procedure doSimpleStackTest(:) is called from FindSubsequence(-) to
perform the previously described operations (line 6). The state of the sequence
index after matching €; ;.2 is shown in Figure 9.

Note that the twig pattern in Figure 9 can match anywhere in the incoming
document except when the root node of a document is involved. If node B is
required to match the root of the document (“/”), then the runtime stack is
checked to determine if B is the only element in the stack. Ifit is true, then this
implies that node B in the twig pattern matches the document root.

4.3.2 Branch Node Processing. It has been shown that filtering by subse-
quence matching alone can lead to false positives [Rao and Moon 2004]. To elim-
inate such false matches, iFiST takes refinement steps by testing the connect-
edness property for branch nodes in twig patterns. We begin with an example to

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:19

(A AL 5

B
- B E 11
D 1 M\ N
2
H
/

D G F 1

a|w|—|»>

~|s|~|0

w|u|—|m
~|a|~|=
<
o

E B,2 B E
B ; (B2) (B.5) (E7) Q,: /AIB/DIEGYF L] s#
A | A ’ ﬂ\
H c
k :.... A\ D B C E C E B C B
sae (D.3) (E4) (C,6) (G3)(F,9) (F,10) BE [2]2]2]2]2 A G
]I) 123|445 E C 1{2]3]|4
LPS(T)I@@AQBA GE FE FEA Q,:/C[BDVE | / / S| /| s# Q,:/B[EJ/C | / $ /| $#
(a) XML document tree T (b) twig patterns

Fig. 10. Progressive subsequence matching.

motivate the need for special branch node processing to support the refinement
phase.

For convenience, assume that the elements in each XML document tree are
numbered in preorder.! Annotating the elements in an XML document with the
preorder numbers can be done by the SAX parser in a straightforward manner
by maintaining and incrementing a counter on every call to StartTagHandler.
The counter value is then assigned to the tag being processed.

Example 5. Consider the example in Figure 10. The XML document tree
T is numbered in preorder (see Figure 10(a)). Figure 10(b) shows two twig
patterns @1 and @ 3. For document tree T, LPS(T)=DBEBACBAGEFEF
E A. For twig pattern @ 1, LPS(®Q 1) =DBAGEFE A and for @3, LPS(Q3) =E
B C B. LPS(Q1) is a subsequence of LPS(T) and LPS(®3) is also a subsequence
of LPS(T). Both twig patterns @1 and @3 are candidates that could be possible
matches in T. However, @ 5 is not a true match since there is no node B in T that
has both E and C as child nodes. Thus @3 matches two different B nodes in T,
namely, (B,2) and (B,5). In order to eliminate such false matches, it is essential
to ensure that the B nodes that were matched during subsequence matching
represent one and the same node in T.

On the other hand, two E nodes of LPS(Q 1) matched two E nodes in LPS(T)
that represent one and the same node in T, namely, (E,7). And two A nodes of
LPS(® 1) matched two A nodes in LPS(T) that represent one and the same node
in T, namely, (A,1). Note that @1 has a match in T.

iFiST pays additional attention to branch nodes in the profile sequences in
order to facilitate the refinement phase to discard false matches. The main task
of the branch node processing is to keep track of matching element tags in an
input XML document. This information about these elements is used in the
refinement phase to check the connectedness property. A data structure called
BranchlID set is maintained for each occurrence of a branch node in the profile
sequence to keep track of the preorder number of the element in the document
that matches the sequence node.

During the subsequence matching phase, if the profile sequence node, say q,
is a branch node, then doBranch(q) stores the preorder number of the element

1Other numbering schemes like postorder can also be used. However preorder numbering seems
to be a natural choice since the tags in the document are parsed in document traversal order.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:20 o J. Kwon et al.

in the document with label g745; (that matches q) in the BranchlID set for q. In
general, the number of times a given node appears in a Priifer sequence is de-
termined by the number of its child nodes [Rao and Moon 2004]. Thus, a profile
sequence can have two different types of branch node occurrences for any given
branch node in a twig pattern: an internal branch and a final branch. For exam-
ple, in Figure 10(b), the profile sequence nodes @15 and @ 1,7 correspond to the
branch node E in the twig pattern. @15 does not correspond to the last occur-
rence of E. We refer to such a node as an internal branch node. Note that the in-
ternal branch nodes in a profile sequence do not have any relationship with the
next node in its profile sequence. Hence, no stack checks are necessary and the
filtering algorithm can proceed to test the next node for subsequence matching.

On the other hand, the last occurrence of a branch node always has either a
parent-child or ancestor-descendant relationship with the following node. For
example, node @17 in Figure 10(b) has an ancestor-descendant relationship
with @15. We refer to such a node in a profile sequence as a final branch node.
For a final branch node, in addition to storing the preorder number of the doc-
ument node in its BranchID set, the stack test is required. Only on successful
stack test does the filtering algorithm examine the next node for subsequence
matching.

In Figure 10(b), two BranchID sets are maintained for @13 and @1 g corre-
sponding to node A. Similarly, two BranchID sets are maintained for € 5 and
Q1,7 corresponding to node E.

4.3.3 Refinement by Branch Node Verification. The subsequence matching
phase computes a superset of twig patterns that are candidates. False matches
are eliminated by verifying the connectedness property at the branch nodes in
the twig patterns from this candidate set.

When the root node of a profile sequence is processed, then the BranchID sets
that are constructed during the subsequence matching phase are examined.
Algorithm 4 shows the steps involved. For each branch node / in the candidate
twig pattern, the algorithm computes the intersection of the BranchID sets for
each occurrence of the branch node in its profile sequence (lines 3 through 6). A
nonempty result set implies that this branch node! in the twig patterns matches
a branch node in the input document since there exists at least one matching
subsequence where all matching occurrences of this branch node in the profile
sequence represent one and the same node in the document. If every branch
node in the twig pattern matches at least one branch node in the document,
then it is reported as a match (line 7).

For example, consider the twig pattern @1 in Figure 10(b). The intersection of
the BranchID sets for node A is {1}. Similarly, the intersection of the BranchID
sets for node E is {7}. As a result, Algorithm 4 reports @1 as a match, since @
has a true match in T.

YFilter performs postprocessing to check whether an entire twig pattern
has been matched or not, since a twig pattern is decomposed into several linear
paths and matched separately first. iFiST uses the postprocessing to discard
false positives since branch node testing cannot be performed during progres-
sive subsequence matching.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 13:21

Algorithm 4. Branch Node Verification

Input: {qoid }: qqia is a profile sequence identifier;
Output: Report a match;

procedure BranchNodeVerification (gqiq)
test «— true;
: Lp « list of labels of the branch nodes in the twig pattern with id Qid;
: foreach | in Lp do
n «— number of BranchID sets for [in the profile sequence;
let Bi1, Biz, ..., Bin denote the n BranchID sets for [
if N, B = @ then test — false;
endfch
7: if test = true then report gg:q as a match;

A 2

5. OPTIMIZATIONS

This section presents optimization strategies to speed up the filtering process
and reduce the memory requirements. The first optimization exploits the run-
time stack to avoid frequent node copying, and enables early elimination of
subsequences that do not yield a match. The second optimization introduces
the notion of shared processing of profile sequences. By exploiting similarity
among profile sequences, this technique allows to avoid redundant processing
during filtering, to reduce memory consumption.

5.1 Exploiting the Runtime Stack

Avoiding Frequent Node Copy to Sequence Index Let us again consider the ex-
ample in Figure 9. Based on Algorithm 1, FindSubsequence(-) is invoked each
time the EndTagHandler is called. In the example, when the EndTagHandler
for leaf E is called, the set of elements in the stack represent a segment of
the LPS(T), namely, E D C B A. Note that the node A is a branch node.
A naive way is to invoke FindSubsequence(-) once for each of E D C B A
in order using Algorithm 1. This requires copying the next node of a pro-
file sequence to the sequence index each time FindSubsequence(-) matches a
node in the profile sequence. However, since the runtime stack stores a seg-
ment of the LPS up to the branch node A, we can use it as a look-ahead
buffer. Thus, instead of performing doSimpleStackTest(-) for each tag, an it-
erative stack check can be performed for a group of contiguous tags in the
sequence, thereby avoiding copying nodes in the profile sequence up to the
branch node. The filtering algorithm aggressively tries to find subsequence
matches up to an internal branch node. When a final branch node is en-
countered, the stack checking resumes. The doSimpleStackTest is replaced by
doRecursiveStackTest (Algorithm 5) that performs the stack checking. On suc-
cess, the next node of the branch node is copied to the sequence index. In essence,
we have effectively skipped copying nodes up to the branch nodes in the twig
pattern.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:22 o J. Kwon et al.

Algorithm 5. Recursive Stack Checking to Avoid Node Copying

Input: ¢ is a node in the profile sequence;

v is a value in the Sym attribute of ¢
procedure doRecursiveStackTest(q, v)

1 ¢ — NextNode(q);

2: if (v = ¢/’ and TestPC(q, q/) is successful) OR
(v="*/"/" and TestAD(q,qI) is successful) then

3: foreach value v’ in qlsym do

4: switch v do

5: case ‘/7or ‘//:

doRecursiveStackTest (q/ R v/);

6: case ‘$’: doBranch (q/);
7: case ‘#’:
BranchNodeVerification (qéid);
endsw

endfch
if gsym = ‘¢’ then

9: | copy q/ into Sequence Index using key q;abel;
endif

endif

To incorporate our optimized stack testing, a modification to Algorithm 2
is done by replacing the procedure doSimpleStackTest with doRecursive
-StackTest on line 7 and by omitting lines 10 through 12. In Algorithm 5,
on a successful stack test (line 2), the next node of ¢ in the profile sequence,
that is, ¢ is used for subsequence matching by performing tests similar to Al-
gorithm 2. Thus our algorithm tries aggressively to find subsequence matches
up to the branch node. When the iterative stack check succeeds, the next node
of the branch node is copied to the sequence index. In essence, we have effec-
tively skipped copying nodes up to the branch node in the twig pattern. Note
that in Algorithm 5, if a branch node in the profile sequence has a “/” or “//”
relationship with the next node, then the subsequence matching continues by
invoking doRecursiveStackTest(-).

Limiting the Range of Subsequence Matching. Another important benefit of
the runtime stack is that we can limit the range of the document sequence for
subsequence matching. Consider an XML document T and a twig pattern @;
in Figure 9. For document T, LPS(T) =--- EBCBA ... CB A ... For twig
pattern @;, LPS(Q;) =--- E C B -... LPS(T) has two subsequence instances
that match “E C B”. (They are underlined in Figure 9.) In the XML document,
the second element C (leaf node in T) and its parent, namely, B, do not have
any relationship with element E. When the Priifer sequence label E of LPS(T)
is generated, there is only one C and B in a global stack. Thus our filtering
algorithm finds only one instance of subsequence “E C B” using the elements
in the stack. As a result, the stack provides pruning capability by avoiding the
computation of matching subsequences that do not represent true matches.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:23

A
(A1) N~

D B A G E F E A
- M\ f /E\ tlofofofrfur]]n
D E D G F 1234 s]e]7
B i B2) B)S) (E,7) o mmmysaye L s [s sr]s
A A | /R c
K E.... A D|B|C|E]|C E|B|C|B
s (D3) (Ed4) (C.6) (GB)(F9) (F,10) 5E [2]2]2]2]2 A Gl
II) 1|2|3]4]|s E C 1|2]3]|4
LPS(T) : DB EBA CBA GE FE FEA Q:/CBDYE | /| /|8 | v]|s# Q:/BEYC | /| $ |/ |8
(a) XML document tree T (b) twig patterns

ﬂ
o
&
w

D E
[0 Flaubfe./={oauHe.] =

(c) sequence index during filtering

]
o]
£

Q2,'|

[
£]
@[]
oL
> B

Fig. 11. Benefits of the runtime stack.

Shortly we illustrate the execution of our filtering algorithm with an XML
document T in Figure 11(a) and twig patterns @1, @2, and @3 in Figure 11(b).
The nodes @1,1, 2,1, and @31 are initially stored in the sequence index shown
in Figure 11(c). This figure also shows the changes to the sequence index during
the filtering process. In this example, we will illustrate the use of stack tests
for parent-child and ancestor-descendant relationships. We skip the branch
detection techniques for this example.

Example 6. When FindSubsequence(D) is invoked, the state of the runtime
stack is shown in Figure 11(a). The node list in the sequence index for key D is
first processed. Currently two nodes @ 1,1 and @2 1 qualify. First, let us consider
®1,1. The next node for @11 is @1,2. The progressive subsequence matching
phase succeeds since Q1,2; ,., = B, Ql’]'Sym = “//”, and B is one element below
D, the stack test is successful (i.e., TestPC(-)). Now the iterative stack test from
Q1,2 is invoked. The next node for @12 is @1,3. Because the label A is one
element below the label B in the stack, the stack test is successful again. @13
is a branch node, so the next node 14 is added to the sequence index. Since
the label of @1 4 is not existing in the sequence index, the hash key G is created
and the @1 4 is the first node of lists in the hash key G. Thus we have matched
nodes Q1,1 through @1 3. Here we can skip copying the @12 and @13 into a
sequence index. Next, let us consider @g2,;. The next node for Q21 is @22. A
stack test for @21 is successful and @22 is matched. Then the iterative stack
test from Q29 is called but a stack test for @2 o is unsuccessful since C is not
present in the stack. In this case, no node copying is done, and the 2 ; remains
in the sequence index as shown in Figure 11(c).

Next, when FindSubsequence(B) is invoked, there is no hash key in the se-
quence index for the label B. Hence nothing is done. Then, FindSubsequence(E)
is invoked, @31 passes the stack check, and 32 is matched. Because @32 is a
branch node, the next node @33 is copied to the sequence index by creating the
hash key C and adding it to the lists on the key. Next FindSubsequence(B) is

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:24 o J. Kwon et al.

invoked again, there are is no key in the sequence index for the label B. Hence
nothing is done. When FindSubsequence(C) is invoked, the global stack at this
instant has elements C, B, and A in it. Only node @3 3 is active in the sequence
index for hash key C. Since nggsym = “/” and label B is below the label C in

the runtime stack, we have matched the next node @34 which a branch node
and a root node.

Differences with Other Stack-Based Pattern Matching Techniques. For the
task of XML pattern matching, several stack-based twig join algorithms have
been proposed [Bruno et al. 2002; Lu et al. 2004; Chen et al. 2006a]. The main
difference between these stack-based algorithms and iFiST is in the number
of stacks. (In iFiST, only one stack is maintained.) In TwigStack [Bruno et al.
2002], each element node in a query has a stack. TwigStack is I/O and CPU
optimal for queries with ancestor-descendant relationships between nodes. In
TwigStackList [Lu et al. 2004], each element node in a query has a combination
of a stack and list and queries with parent-child relationships are efficiently
handled. In Twig?Stack [Chen et al. 2006a], each element node in a query
has a hierarchical stack which consists of an ordered sequence of stack trees.
Generalized tree pattern queries are handled by this algorithm.

Recently, an index-based filtering technique called BoXFilter was pro-
posed [Moro et al. 2007]. The BoXFilter adopts Priifer sequence-based repre-
sentation for user profiles which are then organized into a height balanced tree
structure. Two stacks are used during the filtering process. However, BoXFilter
does not support queries with wildcards. Like iFiST, unordered matching is not
supported in BoXFilter.

Our iFiST system uses only one runtime global stack for temporarily storing
elements in an input document during filtering. The size of this runtime stack
is bound by the height of the input document tree.

5.2 Shared Processing of Profile Sequences

In a typical publish-subscribe environment, it is common that several users
share similar interests. Thus, identifying similar profiles presents another op-
portunity to further reduce the filtering cost for finding matching user profiles.
In this section, we present strategies to further improve the performance of
iFiST by avoiding redundant processing of profile sequences during the filter-
ing phase. This is achieved by identifying segments (i.e., a contiguous set of
sequence nodes) of profile sequences that are common between different user
profiles. As a result, these common segments can be processed just once.

5.2.1 Shareable Segments. Itisessential tofirst determine the granularity
of segments that can be shared so that sharing is effective and can be conve-
niently incorporated into iFiST. The sequence representation of user profiles
and the left-to-right processing of profile sequence nodes necessitates a rather
different approach from an approach such as path sharing that YFilter [Diao
et al. 2003] uses. YFilter stores root-to-leaf paths of a twig pattern in a sin-
gle nondeterministic automaton, the sharing starts from the root node of a
twig query and proceeds until no more sharing is possible. During sequence

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:25

construction of user profiles by Priifer’s method, the node labels in a twig pat-
tern from a leafnode to its immediate ancestor branch node appear contiguously
in the profile sequence. Also the node labels from a branch node to its immedi-
ate ancestor branch node appear contiguously. We define shareable segments
in a profile sequence as follows.

Definition 2. Shareable segments of a profile sequence are defined as seg-
ments of a profile sequence that can be shared and are generated progressively
as follows. Starting from the leftmost sequence node, each node in the sequence
is examined to determine if it marks the end of a shareable segment.? The next
shareable segment begins from the sequence node following it. For each node
in the profile sequence:

(1) if a sequence node is an internal branch node, then this node marks the end
of a shareable segment, or

(2) if a sequence node is the last node (i.e., root node) of the profile sequence,
then this node marks the end of a shareable segment.

In Section 4.3.2, we introduced two kinds of branch nodes in a profile se-
quence: an internal branch node and a final branch node. The internal branch
node and the next node of internal sequence node (usually it is a leaf node)
have no relationship. Thus we can mark the internal branch node as the end
of a shareable segment. On the contrary, the final branch node and the next
node of final branch node (it is not a leaf node) have a parent-child relation-
ship or an ancestor-descendant relationship. Therefore, we do no mark the final
branch node as the end of a shareable segment. The intuition behind choosing
such shareable segments is to achieve effective sharing that is not restricted
to paths that can be shared only from the root (e.g., YFilter), as well as ease of
incorporating it into our existing iFiST framework.

Remark 1. Each shareable segment in a profile sequence captures a set of
edges in a twig pattern. Any pair of edge sets is disjoint (Definition 2).

Remark 2. Each shareable segment can be processed by one invocation of
FindSubsequence(-) during filtering.

Based on Remarks 1 and 2, it is evident that by identifying shareable seg-
ments, redundant processing can be avoided during filtering and only one copy
of a segment needs to be stored by iFiST. As a result, both filtering cost and
storage cost can be potentially reduced.

Remark 3. A shareable segment does not guarantee the finest granularity
of sharing among user profiles. Rather it provides a simple scheme to incorpo-
rate shared processing in iFiST.

Example 7. Consider a profile sequence for twig pattern @; shown in
Figure 12. By applying the steps described in Definition 2, three shareable
segments with labels “DBA”, “GE”, and “FEA” are obtained. The 3rd and 5th

2Each segment is identified by two distinct nodes that mark the beginning and the end of it.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:26 o J. Kwon et al.

Q, :/A[B//DI//EIG]/F

D B AlG E E E A
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 <:>
s S /A N/ Y
x v R
internal branch finalbranch root Q,: DBA GE FEA
nodes node node
Fig. 12. Shareable segments of a twig pattern.
Q: DBA GE FE A
A
X C\ s /$ / $/ S#
B E N B Q: DBC EC
S Por @ IS sk
D G F E C
D Q: EB CB
Q,: /A[B//D)//E[G]/F Q,: /C[B/D]//E Q; : //B[E]/C Y /s

Q4 DBA FEA EA
N8/ /I s#] $#

A A A

P I AR Q: EB DBA

B E E B E B E

/" 11'$/1 $#

[mx [5 sIs
D F E D F D Q: FEA DBA EA
Qu: /A[B/DI[/EFVE Qs:/A/BL/EI/D Qg /A[//E/F][B//DV/E LHSE S S#
(a) twig queries (b) shareable segments

Fig. 13. Twig queries and their shareable segments.

nodes in the profile sequence are internal branch nodes and mark the end of
their shareable segments, respectively. The 7th node in the profile sequence is
the final branch node for “E” and it has a parent-child relationship with the
8th node, so it cannot be an end of the sharable segment. The 8th node in the
profile sequence is the root node and marks the end of its shareable segment.

Each shareable segment is precisely represented by the Label attribute and
Sym attribute of the profile sequence nodes. Figure 13 shows six twig patterns
and their respective shareable segments.

5.2.2 Indexing Shareable Segments. In the following section, we shall de-
scribe data structures used to index profile sequences based on shareable seg-
ments. First, we shall describe how the profile sequences can be represented
compactly and then show how the sequence index can be used to index these
sequences.

The set of shareable segments are stored in a hash table segment table us-
ing a segment as the key. Each segment of a profile sequence can be uniquely
identified by the profile sequence id and its position in the sequence. For each
key (segment) in the segment table, the value is essentially a list of (sequence

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J 13:27

Key Candidate
(=Segment) List Pointer

DBA |/ / $/ |[L1][4,1] |1
ce [/ s Y
FEA |/ §/ $# 3
DBC |/ / $/ [2,1] 4 n
EC /| $# 5 Qa: S
6 10
EB ! $// [3,1] 6
TR ; Q,:
FEA |/ /I $# [6,1] 8
EA |/ $# 9 Qs:
EB /'8 [5,1] 10
DBA | // S// $# 1 Q:
(a) segment table (b) terse sequences (c) sequence index

Fig. 14. Storing and indexing profile sequences compactly.

id, position) pairs. We call this list the candidate list. A candidate list is used to
perform state transitions during filtering by storing current segments of twig
patterns. Initially, each list in the segment table contains the (sequence id, po-
sition) pairs corresponding to the first segments of the profile sequences. Now
each profile sequence is compactly represented as a terse sequence, which is
a linked list storing the identifiers/pointers to the segments in the segment
table. The original profile sequence can be reconstructed by scanning its terse
sequence from left-to-right.

Example 8. For the set of six twig patterns in Figure 13(a), a segment
table is shown in Figure 14(a). The profile sequences are represented by terse
sequences which are shown in Figure 14(b). S; in a terse sequence refers to
the segment in the first row of the segment table.?> The candidate lists are
initialized with the first segments of the profile sequences. For example, the
candidate list in the first row of the segment table contains the first segments
of profile sequences @1 and Q4.

The process of updating the candidate lists during filtering, when a current
segment is matched and its next segment becomes active, is similar to that of
inserting a new profile sequence. However, in this case, the candidate lists are
updated irrespective of whether the segment is the first or not.

The sequence index indexes the terse sequences. In this index, the first la-
bel of a shareable segment is used as a key and the value is a list of point-
ers to entries in the segment table. The sequence index is initialized as fol-
lows. For each terse sequence, we insert a key-value pair (first label of first
segment, pointer to the first segment in the segment table) into the sequence
index.

3For convenience, a subscript number is used to represent a pointer to the row of the segment table.
Note that the Pointer column is not actually maintained in the segment table and is shown only
for illustration.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:28 o J. Kwon et al.

Example 9. The sequence index in Figure 14(c) is initialized with the terse
sequences in Figure 14(b). The first segments of @ and @4 are common and
the first label is “D”. Hence for hash key “D” in the sequence index, a pointer
(shown by “S;”) to the first key in the segment table is stored in the value list.
In addition, the first segment of @2 has “D” as its first label and hence a pointer
to the segment table is stored in the value list (shown by “S,”). Similarly, the
value lists for keys “E” and “F” are initialized too.

During filtering, the index contains a set of segments that need to be matched
against an incoming document. The sequence index stores only one instance of
a shareable segment and hence processes it only once during filtering.

Next we describe how a new profile sequence is added to the segment table.
Given a profile sequence, for each segment S we do the following two steps:
(1) If S is absent in the table, we insert it. (2) If S is the first segment of
the profile sequence, the candidate list corresponding to S is updated with the
profile sequence id and its position.

5.2.3 Useful Observations. The iFiST system decomposes the sequenced
representation of a twig pattern into several segments. This process helps in
identifying shareable parts of twigs. Once a segment is matched, the next seg-
ment is considered for matching. Thus conceptually each profile sequence is still
processed from left-to-right, without breaking it into root-to-leaf paths. Thus
iFiST processes twig patterns in a holistic fashion.

Remark 4. Definition 1 holds for iFiST under shared processing using seg-
ments.

When a twig pattern is added to the system, YFilter decomposes it into sev-
eral root-to-leaflinear paths and inserts each of them into the automata. During
filtering, all linear paths of the twig pattern are independently processed for
matches. Once the entire document is parsed, a merging step is performed to
obtain the final matches.

Another difference between YFilter and iFiST is the way twig patterns are
shared and processed. In YFilter, the sharing of linear paths occurs from the root
node in a user profile (top-down in nature). In iFiST, the sharing occurs from a
leaf node to a branch node in a user profile (bottom-up in nature). For example,
consider the twig pattern @; and @4 in Figure 13. In iFiST, these patterns
share the first segment “DBA”, which is processed only once. In YFilter, these
patterns share the path “/A/B//D”, which is also processed only once. Thus,
when the selectivity of element D is higher than element 4, it is particularly
advantageous to process bottom-up.

XTrie [Chan et al. 2002b] decomposes XPath expressions into sequences of
XML element names (i.e., substrings). XTrie breaks a twig if “//” or “*” appears
and can only process fragments with “/” axis as a unit. However, XTrie is not
a holistic approach. XTrie will have a large number of fragments when “//” or
“” occur frequently in the twig patterns. As an example, consider the twig
pattern @ = /alb//d]1//elgll.//f]1/ = / * /c//h containing two branch nodes
(element a and e) and four root-to-leaf linear paths. XTrie decomposes @ into

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:29

Segment Table Sequence Index
DBA |/ / 8/ [1L1][4.1] |1
GE |/ s [1.2] 2
DBAT LD | — T DBC |/ / s/ |21 |a
/] 8/ I %, B B E
H |\ EC |/ s# 5
Segment S, . /\ | /’\ EB IRy B0 6
— | B \
i w H E C G F F B |/ s# 7
A N
DBC b FEA |/ // s# | [61142] |8
/S stack EA |/ s# 9
Scgment S, LPS(T) : DHB EBA CBA GE FE FEA BB |/ S 511 10
DBA |/ $// $# 11
(a) recursive StackTest (b) after processing D

Fig. 15. When FindSubsequence(D) is invoked.

six fragments : f1 = /a/b, fo=//d, fs=//e/g, fa=//f, [s =/%*/*/c,and
fe¢ = //h.On the other hand, iFiST creates four segments for @ and is a holistic
approach.

5.3 Optimized Shared Filtering with Stack

In this section, we describe the progressive subsequence matching phase after
incorporating the two optimizations described in Section 5.1 and Section 5.2.
Since each shareable segment in the segment table contains both the Label at-
tribute and the Sym attribute of a profile sequence node, the process of checking
the runtime stack can be done as before. The following is an example that il-
lustrates the process of subsequence matching.

Example 10. Consider an XML document tree T shown in Figure 15(a)
and the segment table/sequence index shown in Figure 15(b). The initial states
of the segment table/sequence index are shown in Figure 14(a) and 14(c),
respectively.

When FindSubsequence (D) is invoked (due to the end tag of D), the state of
the stack is shown in Figure 15(a). Using the pointers “1” and “4” in the value
list corresponding to label “D” in the sequence index, we fetch segments S; and
S, from the segment table. The recursive stack test checks segment S; against
the entries in the runtime stack. S; passes the stack test. The candidate list
corresponding to S; contains pairs [1,1] and [4,1]. The next segments of @1 and
@ 4 need to be copied into the filtering data structures. Using terse sequences,
we can identify the next segments of @1 and @4, namely [1,2] and [4,2]. These
are added to the candidate lists of Sy and Sg in the segment table. Further, the
pointers to Sy and Sg are added into the sequence index. The new hash key “G”
is created in the sequence index when inserting the pointer S;. The inserting
Sg is skipped because it it already existed in the hash key “F”. S; does not pass
the stack test since element “C” is absent in the stack and the filtering data
structures are unchanged. The states of the segment table/sequence index are
shown in Figure 15(b).

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:30 . J. Kwon et al.
Segment Table Sequence Index
DBA |/ / $/ [L1][4.1] |1
/ FEA |/ §/ s4 3
E B T
XY, — g |+ TN B B E DBC |/ / $/ |[21] 4 [o] Su
Segment S B A | /l\ EC |/ s# 5 Sto
= s EB |/ s/ 13.1] 6
H E C G F F
A | B |/ s# 132] 7
EB D FEA |/ /| S# [6,1114.2] |8
K 1[4, oLls
/I8 stack A | s 5 .
Segment S, LPS(T) : DHB EBA CBA GE FE FEA EB |/$ 15.1] 10
DBA |/ $// $# [5.2] 1
(a) recursive stacktest (b) after processing E

Fig. 16. When FindSubsequence(E) is invoked.

When FindSubsequence (E) is invoked, the elements in the runtime stack
are shown in Figure 16(a). There are two pointers (e.g., 6 and 10) in hash key
“E” of the sequence index. Both segments Sg and Sio pass the stack test and
pairs [3,2] and [5,2] are added into the candidate list of the segment table. The
pointer “7” (second segment of @ 3) is copied into the value list of hash key “C”
after creating the hash key “C” in the sequence index and pointer “11” (second
segment of @5) is copied into the value list of hash key “D”. This is shown in
Figure 16(b).

The core operations during filtering with shared processing are shown in
Algorithm 6. The operation doRecursiveStackTest (line 2) is similar to lines 2
through 9 in Algorithm 2. As explained in Section 4.3.2, the branch node in-
formation is maintained in the BranchID sets during the recursive StackTest.
To speed up this StackTest, the segment table, sequence index, and the terse
sequence are used during subsequence matching. Because different profile se-
quences can share the same segment in the segment table, the recursive Stack-
Test is invoked only once.

Algorithm 6. Progressive Subsequence Matching with Stack Optimization

Input: {L} - L is a Priifer sequence label;

procedure FindSubsequence(L)
1: for each Segment s in Sequencelndex[L] do
2 if doRecursiveStackTest(s) is true then
3: for each pair [seqld, seqgPos] in Candidate List of s do
4: let seg be the (segPos + 1), segment of Qseqrd ;
5 let segL be the first Priifer sequence label of seg;
6 Add the pair [seqld, segPos + 1] into the Candidate List of seg;
7 Copy seg into the Sequencelndex[segL];
endfor

endif

endfor
end

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:31

6. WILDCARD PROCESSING

Wildcards(*) in XPath are commonly used when element names are unknown
or do not matter. They are also useful as a shorthand notation to represent
a set of element names. However, it can be expensive to process wildcards if
they are compared with all the elements in the runtime stack during the stack
test. To reduce the cost of processing wildcards in the iFiST system, we re-
move the wildcard nodes from the profile sequence and store them as wildcard
information denoted in the nonwildcard sequence nodes. The attached wild-
card information is used to check the distance of elements in the runtime stack
during subsequence matching.

There are three types of wildcard nodes in twig patterns: (1) a leaf wildcard
node which appears as a leaf node of a twig pattern; (2) a branch wildcard node
which appears as a branch node of a twig pattern; and (3) a regular wildcard
node which is not a leaf wildcard node nor a branch wildcard node. The iFiST
system handles wildcard nodes differently according to their types.

6.1 Processing Leaf and Regular Wildcards

In this subsection, we explain how to process the regular wildcard nodes and
leaf wildcard nodes.

Capturing Wildcard Information. Each wildcard node is denoted by g5 and
contains a 2-tuple (op, extra), where:

—op denotes relationships between wildcard and nonwildcard nodes.
—extra is the value of an additional distance for stack check.

To fully capture the information for wildcards, we maintain three values de-
noted by op, N,, and I as we traverse from a leaf node to the root node in
a user profile. * The variable op denotes either a parent-child or an ancestor-

descendant relation. The variable op is initialized to “=” and it is changed to
“>” whenever we meet an ancestor-descendant relationship in the leaf-to-root
path.

To compute extra, we use two values N, and Ig. The value of extra is the
sum of N, and Iz. This is because we need to differentiate the leaf wildcard
nodes from regular wildcard nodes as explained earlier. N, is an integer that
represents the number of wildcard nodes. N, can be computed as follows: The
value N, is initialized to 0. The value N, is increased as we meet the wildcard
node, and initialized again after it is saved into g;. I is an integer that records
a regular wildcard node. The value I is initially set to 1 and changed to 0
when we meet a regular wildcard node. It is initialized again after it is saved
into g;.

For example, given a user profile @ ;=/A/*/B//*/*/C/*, we can compute wild-
card information at nodes A, B, and C as shown in Figure 17. LPS(Q ;) is shown
and the values for N, and Iy are also depicted. The underlined values at non-
wildcard nodes are used to obtain the value for extra in g;. (1) At the first

4The Priifer sequence of a user profile is generated in a bottom-up manner.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:32 o J. Kwon et al.

LPS(Q): *C**B*A

* * B *

B RAEEN

@ | >

1
1 1

1
1

QIH —

qs: (=) q5: (=3) 95: (=2)

Fig. 17. Computing wildcard information.

A LPS(Q): D*A*EFEA
NN Df*|A|*|E|[F]|E]| A
;T /E\ i i il i i i i
D * F 123456 7]38
Q. /A[*/DY/E[*/F B s s s s
(a) twig pattern with wildcards (b) before deleting wildcard nodes

LPS(Q): DAEFEA

DA |E|F|E]|A Da |E FEA
i i i i i i s $ / $/ S#
1|23]4]s5]|s =2 =D
vls [su]/ s | s#

=2 | =D

T T Wildcard Wildcard

Information qs Information qg
(c) profile sequence (d) segments

Fig. 18. Handling twig patterns with wildcard “*”.

wildcard node in LPS(@) ;), N, is increased to 1 and the value of I is set to 0
because it is a leaf wildcard node. Thus, wildcard information is represented
by a tuple (“=”, 1) at node “C” because the label “C” is not a wildcard. Then, the
values of N,, Ir, and op are reset to their initial values. (2) At node “B”, N, is
the value of 2 because two wildcards appear after the node “C”. The op has a
value of “>” since we meet the ancestor-descendant relationship from the node
“C” to the node “B”. Thus the wildcard information of the node B is represented
by a tuple “(>, 3)”. Then, N,, Ir, and op have their initial values. (3) At the node
“A” we obtain wildcard information as “(=, 2)” since N, is the value of 1, I is
the value of 1, and we only meet the parent-child relationship.

Note that if there appears only parent-child relationship(“/”) in the root-to-
leaf path, g5 represents as an exact value (equality). Otherwise gs is represented
as a range value (inequality). The g;s attribute is stored with the parent node of
a wildcard node in the leaf-to-root path, which is the next node of the wildcard
node in the profile sequence.

Example 11. The twig pattern ; in Figure 18(a) has two wildcard nodes:
a regular wildcard node which is an ancestor of node D and a leaf wildcard
node which is a child of node E. At node “A” in the leaf-to-root path /A/*//D, § is

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J 13:33

A A
//~ D D P G
B E H B Erememmmmmenees >k B
H
I TN B B PN A A
H G F F H G F F
: A A ! i th
_____________________ runtime pai
D runtime ~ path D stack stack
stack stack
LPS(T) : DHBA GE FE FEA LPS(T) : DHBA GE FE FEA

(a) when FindSubsequence(D) is invoked (b) when FindSubsequence(E) is invoked

Fig. 19. Two stacks for wildcard processing.

“(>, 2)”. This is because N, has a value of 2 after resetting 1 at node “D” and
op is “>" after meeting the ancestor-descendant relationship. Similarly, at node
“E” in the leaf-to-root path /A/E/*, § is “(=, 1)”.

Figure 18(b) shows the profile sequence before deleting wildcard nodes. The
computed values of § are used as wildcard information in Figure 18(c). The 2"¢
node, which represents the parent node of a regular wildcard node, has “(>,
2)” as the § attribute. The 3¢ node, the parent of a leaf wildcard node, has
“(=, 1)” as its § attribute. Similarly, the wildcard information is added into the
segments as shown in Figure 18(d). The first and second segments have this
wildcard information.

Wildcards Processing during Subsequence Matching. Since a profile se-
quence and its segments for a user profile are constructed in a bottom-up fash-
ion, the parent node of a wildcard node in a twig pattern stores its wildcard
information in the sequence. The attached wildcard information is checked dur-
ing subsequence matching. When we process sequence nodes or segments which
contain wildcard information during the stack test, their wildcard information
is also checked.

The overhead for processing wildcard nodes is that we need another stack
to keep track of all elements on a leaf-to-root path in an XML document. We
refer to this stack as path stack. The elements of the runtime stack are added
and deleted according to start tag events and end tag events of the input XML
document, whereas the elements of the path stack are added due to start tag
events and updated only when the leaf node of the XML document has changed.
The path stack is used only to check the wildcard information for leaf wildcard
nodes. The following example explains how two stacks are used to check the
wildcard information.

Example 12. Figure 19 shows the difference between the two stacks when
we parse an XML document. When FindSubsequence(D) is invoked, ele-
ments of the runtime stack and the path stack are the same. But, when
FindSubsequence (E) is invoked, the elements of two stacks are different. The
runtime stack stores all ancestor nodes and the node E. The path stack stores
all nodes of the leaf-to-root path which contains node E.

Assume we are given the query in Figure 18(a) and its profile sequence in
Figure 18(c). In FindSubsequence (D), we process the 1% node and 2"¢ node in
Figure 18(c). The wildcard information “(>, 2)” will be checked. Since the level

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:34 o J. Kwon et al.

(A1) (A1)
7 ...
A LPS@yc DA 82 @4 [®2 @4 D
) o[-]~ | AL e R\
Py A ®3) 5 09 | |G|+« (E)ES) D) i |4
¢ b BEERE ! L !
T G.6) N N P (G.6)
< IA/[//C)/D ! i !
G (H7) I K H)
Wildcard | i runtime !
Branch Nodes (C,8) =emmmmened stack (C.8)
(a) twig pattern and the profile sequences (b) processing wildcard branch nodes

Fig. 20. Branch wildcard nodes processing.

difference of a node A and a node D in the runtime stack is more than 2, the
stack check will succeed. Then, the next node of the branch node is copied to the
sequence index. In FindSubsequence (E), the 3" node is processed. The wildcard
information “(=, 1)” is an exact value, which means the deleted wildcard node
is a leaf wildcard node. Thus we use the path stack to check whether there are
some nodes above the node E. The 3"¢ node is passed the check because there
is a node G above the node node E. Similarly, we can process the segments with
wildcard information.

6.2 Processing Branch Wildcards

Since branch nodes in a twig pattern are used to eliminate the false matches,
if we eliminate the branch wildcard nodes in a twig pattern we may have false
matches due to the lack of information. Thus, in the case of branch wildcard
nodes we treat the wildcards in the same way of processing the typical elements
in a twig pattern. In other words, the sequence nodes for branch wildcard nodes
are also generated.

The difference between handling the sequence nodes for elements and the
sequence nodes for branch wildcards occurs only at the branch node processing
during the subsequence matching. When we compared the sequence node to the
elements of runtime global stack, the sequence node for an element is matched
to only one element in the stack. However, the sequence node for a branch
wildcard node can be matched to several elements in the stack. For this reason,
the preorder numbers of all possible matches in the stack are stored in the
BranchID set for branch wildcard nodes. The steps for computing intersection
of the BranchID sets remains unchanged. The overhead for processing branch
wildcard nodes is the increased number of members of BranchID set.

Example 13. Atwigpattern @ ; in Figure 20(a) shows two branch wildcard
nodes in its profile sequence, which are the 2nd and the 4th nodes, respectively.
When FindSubsequence (C) is invoked, which is shown the left in Figure 20(b),
there are six elements in the stack. The second node is a branch wildcard node
having an ancestor-descendant relationship with the first node. This makes the
possible matches to be elements below the label “C” except the root label “A”
in the stack. The four preorder numbers of matched elements are stored in the
BranchID set. As the same way, a preorder number of the possible match is
stored in the BranchID set When FindSubsequence (D) is invoked.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J 13:35

Table II. Characteristics of DTDs

No. of Distinct Tags | Max Depth of Document
Auction 77 10
NITF 123 10
Treebank 250 20

Table III. Parameters for Synthetic User Profiles

Parameter Description Values

N, Number of user profiles 50,000 to 150,000
L Maximum depth of a user profile 6 to 10

Py Probability of having a descendant axis | 0.0 to 0.8

z Skewness of element name distribution | 0.0 to 0.9

Ny Number of branches in a user profile 1to7

7. EXPERIMENTS

We evaluate the efficiency and scalability of iFiST and YFilter under various
operational conditions, namely, by varying the number of user profiles, by vary-
ing the document sizes to filter, and by varying the number of branches in user
profiles. We also evaluate the performance impact of the optimization tech-
niques presented in Section 5 by varying the degree of duplicate user profiles.
The memory consumption of iFiST is also evaluated.

7.1 Experimental Setup

In our experiments, we used three different datasets: Auction, NITF, and
Treebank. Auction is a synthetic benchmark dataset from the XMark
Project [XMark]. For NITF and Treebank, we generated the datasets from the
NITF and Treebank DTDs using IBM’s XML Generator [Diaz and Lovell 1999].
NITF (News Industry Text Format) is an XML-based DTD designed for the
markup and delivery of news content [NITF]. Treebank is an XML-based en-
coding format for the representation of linguistic corpora [Treebank].

In each dataset, documents were grouped by their sizes in bytes. In sub-
sequent discussions, these document groups will be referred to as “1k”, “5k”,
“10k”, “20k”, and “30k.” Each document group contained 1,000 XML documents,
and all the reported experimental results were averaged over the entire set of
documents.

Table II shows the number of distinct tags in the DTDs and the maximum
depth of the documents. Auction and NITF are moderately deep, while Treebank
is deeper and has many recursions in elements.

To generate user profiles expressed in the XPath language, we used the XPath
generator from the YFilter package [Diao et al. 2003]. Table III lists the pa-
rameters and their value ranges used to generate user profiles as workload for
indexing and filtering. Note that z is a Zipfian skew parameter used for deter-
mining the distribution of element names. If z is set to zero, the element names
will be uniformly distributed. Otherwise, the distribution of element names will
be skewed.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:36 o J. Kwon et al.

Evaluation Metrics

We have evaluated the iFiST system in three main aspects of scalability with re-
spect to: (1) a varying number of user profiles, (2) a varying number of branches
in the user profiles of twig pattern, and (3) a varying size of documents to fil-
ter. In Section 7.2, to demonstrate the performance benefits of iFiST over the
current state-of-the-art, we compare iFiST with the YFilter system [Diao et al.
2003] by showing the trend of the filtering cost in the three aspects. In Sec-
tions 7.4 and 7.5, we present the effect of duplicate user profiles and the memory
consumption.

When iFiST was compared with YFilter, their performance trends were mea-
sured in scaleup for fair comparison. This is because YFilter (obtained from the
University of California at Berkeley) is implemented in Java, while iFiST is
implemented in C++ with Xerces XML Parser version 2.5.0 [Apache].

Whenever filtering cost was measured, it was averaged over a given set of
documents to filter per each set of user profiles. Note that the filtering cost was
the sum of document parsing time and time taken by the filtering algorithm.
The parsing time was very small compared to the filtering time. For example,
the average ratio of the parsing time to the filtering time consumed by iFiST
for dataset 20k was 0.006.

We ran all our experiments on a 2.4 GHz Pentium IV machine with 512MB
memory running Linux. The iFiST code was compiled with GNU g++ compiler
version 3.3.2. The YFilter code was run on a Java virtual machine version 1.4.2.

7.2 Scalability

In this section, we analyze the performance of iFiST and YFilter in terms of
scaleup. Due to the space limitations, we present the scalability trend only for
a few representative cases of document sizes, the number of user profiles, and
the number of branches.

To measure the scaleup performance, we used the following formula.

tAvg - tAvg base (1)

scaleup =
X — Xbase

where tAvg is the filtering time measured for the case under observation at x
and tAvgy,. is the filtering time measured for the base case xp,5.. We assume
that the x-axis grows in unit steps for all aspects of scalability. Depending on the
type of scalability being measured, the tAvg,,,, is the filtering time for either
the smallest number of user profiles, the smallest number of branches, or the
smallest size of input document. More specifically, if scalability is evaluated by
varying the number of twig patterns that are indexed, if 50,000 is the minimum
number of indexed twig patterns, then tAvg,,,, is the filtering time measured for
the twig set of 50,000 user profiles. On the x-axis, although the actual number
of user profiles can increase in steps of 25,000 profiles, we increase x in the
aforesaid formula by one. This kind of normalizes the scaleup value across
different aspects of scalability. Thus, a positive (or negative) measurement of
scaleup indicates that the filtering cost increases (or decreases) as the scale of
test cases grows.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:37

Note that iFiST supports ordered twig pattern matches and YFilter supports
unordered twig pattern matches. We removed twig patterns that yielded un-
ordered matches so that YFilter and iFiST find the same number of matches
and can be compared on a fair basis. YFilter needs a simple postprocessing step
to support ordered matches since it is an unordered matching approach. We did
not consider this postprocessing time for YFilter timings.

7.2.1 Varying Number of User Profiles. We first compared the scalability
of iFiST and YFilter with Auction and Treebank datasets by varying num-
ber of user profiles up to 150,000. The number of twig patterns indexed by
iFiST and YFilter was varied from 50,000 to 150,000 in steps of 25,000. Fig-
ure 21 summarizes the scaleup for iFiST and YFilter for uniform and skewed
twig sets with 3 or 4 branches per a twig. The results for Treebank dataset
1k are omitted since their trend was similar to that of 10k for both iFiST and
YFilter.

Let us analyze the results shown in Figure 21(a). The Auction DTD is used
for uniform user profiles, and the number of branches in the user profiles was
three. The average filtering time grew for both YFilter and iFiST as the num-
ber of twig patterns were increased. For Auction datasets 5k, 10k, and 20k,
the scaleup of YFilter was better than that of iFiST. This can be explained
the following observation. Assume that three queries @i=/a/b, @9=/a//b and
Qs=/a/c are given to YFilter and iFiST. The first node “a” of three queries
can be shared in YFilter’s automata, whereas three queries are treated as
three different segments in iFiST. YFilter has more chances for shared pro-
cessing with increasing the number of user profiles. Similarly, with user pro-
files with 4 branches, the scaleup of YFilter was better than iFiST. A similar
trend was observed in Figures 21(c) and (d) for the skewed datasets of Auction
DTD.

Figures 21(e) and (f) show the scaleup for the uniform datasets of Treebank
DTD. The average filtering time grew for both YFilter and iFiST as the number
of twig patterns were increased. But, for Treebank datasets 10k, 20k, and 30k,
the scaleup of iFiST was better than that of YFilter. By design, YFilter’s stack
stores the active states in the NFA for backtracking. The number of states in
YFilter’s stack was greatly increased due to the deep and recursive structure of
Treebank. As a result, the performance of YFilter suffered. A similar trend was
observed in Figures 21(g) and (h) for the skewed datasets of Treebank DTD.

7.2.2 Varying Number of Branches in User Profiles. In this section, we
compare the scalability of iFiST and YFilter with respect to the varying number
of branches in the twig patterns. The results are shown in Figure 22.

Figures 22(a) and 22(b) show the scaleup for Auction dataset 10k and dataset
20k using the uniform twig set for YFilter and iFiST, respectively. The filtering
cost of YFilter was the same or slightly decreased as the number of branches in
the twig patterns increased from 1 to 5. The filtering time for iFiST decreased
as the number of branches increased. iFiST had negative scaleup as shown in
Figures 22(a) and 22(b). This trend was observed for all the twig set sizes that
we used. The number of matched user profiles decreased when the number of

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:38

Scaleup

Scaleup

Scaleup

Scaleup

. J. Kwon et al.
YFilter,20k —o— ‘ ‘
0.35 YFilter,10k -
YFilter, 5k ~©
03 iFiST/20k v
IFIST 10k ---a---
0.25 iFiST, 5k ---@--- iFiST
02
0.15
01} s
005} o o . .
YFilter
o | B
75,000 100,000 125,000 150,000

No. of user profiles
(a) Auction (uniform, 3 branches)

0.25 : ‘ ‘
YFiter,20k —v—
YFilter 10K -
02 YFilter, 5k o
: IFiST.20K v
IFIST 10K ---dee-
iFiST, 5k ---e---
0.15 .. IFisT
0.1
005 * * “
X X X YEilter= ,'
o L2 B YEET %
75,000 100,000 125,000 150,000

No. of user profiles
(c) Auction (skewed, 3 branches)

1o [YFifter30k —v— ‘ |
. YFilter,20K -4
YFilter,10k @
1 b iFiST,30k v
iFIST,20k ---4-
sl iFiST, 10k ---®@---
YFilter
06
04l B Ea Y X
e A
02} N L AFIST A
® ad ¥ N
0
75,000 100,000 125,000 150,000

No. of user profiles

(e) Treebank (uniform, 3 branches)

YFilter,30k —=—
1T YFilter,20k A
YFilter,10k -0
iFiST,30k v
0.8 iFiST, 20Kk ---a---
iFiST, 10k ---®---
0.6 | YFilter
04t
02f v
hS
s
oL® ‘ ‘ ‘
75,000 100,000 125,000 150,000

No. of user profiles
(g) Treebank (skewed, 3 branches)

Scaleup

Scaleup

Scaleup

Scaleup

035 YFilter,20k —v— ‘ ‘
YFilter, 10k --ae-r-
03 YFilter, 5k o
iFiST/20k v
0.25 IFIST 10k ---a---
iFiST, 5k ---@---
Y N iFiST
0.15
01 F a
......... . . N
0.05
0
75,000 100,000 125,000 150,000

No. of user profiles
(b) Auction (uniform, 4 branches)

2 : ‘
0 YFilter, 20k —v—
YFilter, 10k -
YFilter, 5k -0
iFiST,20k v
015 iFIST 10K ---a--
iFiST, 5k ---e--- iFisT
v B v .
0.1
005 . R N R
o g
0
75,000 100,000 125,000 150,000

No. of user profiles
(d) Auction (skewed, 4 branches)

1o [YFlter,30k —— ‘ ‘
: YFilter, 20K -t
YFilter,10k -
1 F| iFiST.30k ~v
iFIST20K ---a-
o8| iFiST,10k ---@---
YFilter
06 |
LA VN
04 i e ¢
v v
02} FiST
,,,,,,,,,,,,, 3
0
75,000 100,000 125,000 150,000

No. of user profiles

(f) Treebank (uniform, 4 branches)

0.9
YFilter,30k —=—
08 | YFilter,20k ----A----
YFilter,10k ~©
07 iFiST,30k -
06 iFiST.20K ---a---
8 iFiST. 10k ---
= YFilter
05
0.4
03
02t « v v iFiST.
o1 | @ — Qi "
0 Lo X X X
75,000 100,000 125,000 150,000

No. of user profiles
(h) Treebank (skewed, 4 branches)

Fig. 21. Varying number of user profiles.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Scaleup

Scaleup

Scaleup

Scaleup

Fast XML Document Filtering by Sequencing Twig Patterns o 13:39

. . 0.6 . .
0.4 YFilter,100,000 —&— YFilter,100,000 —&—
YFilter,125,000 --w-- 0.4 YFilter,125,000 --v--
0.3 YFilter,150,000 - . YFilter,150,000 -
iFiST,100,000 -4 iFiST,100,000 -4
0.2 iFiST,125,000 ---v--- 02 iFiST,125,000 ---v---
0.1 iFiST,150,000 ---#--- IFiST,150.000 =¢o yiter
YFilter g 09 * &
0} & & & K
S 02
-0.1 8"
.
A _04 .
02t - . v
0B g T 06 g
0.4 F o7 08} o
-0.5
2 3 4 5 2 3 4 5
of branches # of branches
(a) Auction (uniform, 10k) (b) Auction (uniform, 20k)
4
0 VFilter, 100,000 —&— | 0.6 VFilter, 100,000 —&— |
03 YFilter,125,000 v~ | YFilter,125,000 v
YFilter,150,000 - 0.4 YFilter,150,000 -
0.2 iFiST,100,000 A iFiST,100,000 A
: iFiST.125,000 -~ 02 iFiST,125,000 --v---
0.1 iFiST,150,000 ---e- iFiST,150,000 --- YFilter
YFilter s Ore + +
O »— g 02
-0.1 -0.4 . .
: . I S B
-0.2 -0.6 e iFiST
o iFiST v ’
03| v -0.8 .
0.4 P . . . 4 * . . .
2 3 4 5 2 3 4 5
of branches # of branches
(c) Auction (skewed, 10k) (d) Auction (skewed, 20k)
0.6 = T T 1.2 = T T
YFilter,700,000 —&— YFilter,700,000 —&—
05 YFilter,125,000 - 1 YFilter,125,000 -
) YFilter,150,000 - YFilter,150,000 -
0.4 iFiST,100,000 -4 0.8 iFiST,100,000 -4
. iFiST,125,000 ---v---) iFiST,125,000 ---v--- YFilter
0.3 iFiST,150,000 ---®--- YFilter 0.6 iFiST,150,000 ---®---
0.2 e o4
@
0.1 0.2
0 - . 0
o1} ¥ R 0.2
-0.2 -0.4
4 5 6 7 4 5 6 7
of branches # of branches
(e) Treebank (uniform, 20k) (f) Treebank (uniform, 30k)
0.4 0.6
YFilter,100,000 —&— YFilter,100,000 —&—
YFilter, 125,000 --v-- YFilter, 125,000 --v--
0.3 YFilter,150,000 - ° 04 YFilter, 150,000 -
iFiST,100,000 & N iFiST,100,000
iFiST,125,000 ---v---) . iFiST,125,000 ---
02 iFiST,150,000 -=-#:-- iFiST,150,000 --- YFilter
a 02
=]
0.1 2
o
@« 0
0
-0.1 -0.2
o
-0.2 -0.4
4 5 6 7 4 5 6 7
of branches # of branches
(g) Treebank (skewed, 20k) (h) Treebank (skewed, 30k)

Fig. 22. Varying number of branches in user profiles.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:40 o J. Kwon et al.

branches was increased from 1 to 5. This caused a negative scaleup for YFil-
ter and iFiST. YFilter handled twig patterns only by decomposing them into
several linear paths, whereas iFiST handled twig patterns by holistic process-
ing. Hence the average filtering time for iFiST reduced with increase in branch
size. This difference explains why iFiST had a negative scaleup with increase
in branch size. A similar performance trend was observed in other cases shown
in Figures 22(c) and 22(d). Overall we observed that iFiST had scaled better
than YFilter.

Figures 22(e) and 22(f) show the scaleup for Treebank dataset 20k and
dataset 30k using the uniform twig set for YFilter and iFiST, respectively. The
filtering cost of YFilter increased as the number of branches in the twig patterns
increased from 3 to 7. This trend was observed for all the twig set sizes that
we used. On the contrary, the filtering time for iFiST actually decreased with
an increase in the number of branches. This appears as the negative scaleup in
Figure 22(e) and 22(f). The reason why the filtering time for iFiST decreased
with increase in the number of branches was due to the reduction in the num-
ber of matching twig patterns. This downward trend was consistent across all
twig set sizes. For example, the dataset 30k had an average of 185.3, 16.9, 3.9,
2.4, and 1.9 matching twigs per document for the twig sets with 3, 4, 5, 6, and
7 branches, respectively. On the other hand, YFilter’s performance degraded
with increase in the number of branches despite the decrease in the number of
matching twigs. Both the holistic processing of twig patterns and the reduction
of the number of matches caused iFiST to have a negative scaleup with the
number of branches. A similar performance trend was observed in other cases
shown in Figures 22(g) and 22(h).

These results for Auction and Treebank datasets demonstrate that the holis-
tic matching of twig patterns by iFiST yields better scalability than YFilter.

7.2.3 Varying Size of XML Documents. In this section, we analyze the per-
formance of iFiST and YFilter by comparing their scaleup factor as the size of
the XML documents increases.

The evaluation results for Auction and Treebank datasets are summarized
in Figure 23. For each of the plots for Auction datasets, the results from user
profiles with 1, 2, and 3 branches are shown. In the plots for Treebank datasets,
the results from user profiles with 4 and 6 branches were omitted, because they
showed trends similar to those from user profiles with 3, 5, and 7 branches for
both YFilter and iFiST. The filtering time clearly increased with the sizes of
documents.

Figures 23(a) through (d) show the scaleup performance of YFilter and iFiST
measured for a set of user profiles for Auction with different numbers of user
profiles and different types of tag name distributions. The x-axis shows differ-
ent document sizes: 10k, 20k. The size 5k serves as the base case for Auction
datasets. The scaleup plots of iFiST grew more quickly than those of YFilter, and
the gap in the scaleup between YFilter and iFiST was widened as the size of the
documents increased. For Auction datasets, YFilter showed the better scaleup
than iFiST. But we observed that the gap in the scaleup between YFilter and
iFiST was narrowed as the number of branches increased.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Scaleup

Scaleup

1
YFilter,3 —8—
YFilter,2 -
YFilter,1 O
08 iFiST/3 ~—m =
iFIST2 ---ace-
iFiST.1 ---e
0.6
FIST (1,23) ..
_____ .]
04 e
—
-
0.2
YFilter (1,2,3)
-
10k 20k
Size of documents
(a) Auction (uniform, 125,000 user profiles)
0.9
YFilter,3 —8—
0.8 YFilter,2 &
YFilter,1 O
0.7 iFiST,3 &
iFIST2 ---ace- .
06 FIST.1 ---#--
05
iFiST (1,2,3)
0.4 P a
03t e -
0.2 A
"
0.1 YFilter (1,2,3)
0
10k 20k

Fast XML Document Filtering by Sequencing Twig Patterns .

Size of documents

(c) Auction (skewed, 125,000 user profiles)

(e)

25

YFilter,3 —8—
YFilter,5 -
YFilter,7
iFiST,3
iFIST,5 ---a--
iFiST.7 ---

YFilter (35.7) .o

10k

20k 30k

Size of documents

Treebank (uniform, 125,000 user profiles)

25 =
YFilter,3 —&—
YFilter,5 ---ae-
> YFilter,7 o
iFiST,3 &
iFiST5 ---a--
15 FiST.7 -4 YFilter (3,5,7)
4
08 iFiST (3 "
R e—— i o
0
10k 20k 30k

Size of documents

(g) Treebank (skewed, 125,000 user profiles)

Scaleup

Scaleup

13:41

1.2 YFilter,3 —8—
: YFilter,2 -
YFilter,1
1 iFiST,3
iFiST,2 ---ae .
0.8 iFiST,1 ---
0.6 > iFiST_Q;?z?).-———-‘
=
0.4 o
-
0.2
YFilter (1,23) o
<3
10k -~
Size of documents
(b) Auction (uniform, 150,000 user profiles)
1
YFilter,3 —8—
YFilter,2 =&
YFilter,1 -0]
08 iFiST,3 & -
IFiST,2 ---aee-
IFISTA -weee | oo
0.6
g iFiST (1,2,3)
- i
0.4 "
]
o
0.2 -—
YFilter (1,2,3)
0 [
10k -

(d) Auction

Scaleup

Size of documents

(skewed, 150,000 user profiles)

3
YFilter,3 —8—
YFilter,5 -l
25 YFilter,7 - .
iFiST,3 -~
IFIST.5 ---ae--
2 IFiST.7 ---#--
15
1
iFiST (3
0.5 ST 3,
| e
0
10k 20k 0

Size of documents

(f) Treebank (uniform, 150,000 user profiles)

Scaleup

3
YFilter,3 —8—
YFilter,5 -
25 YFilter,7 ¢
iFiST,3 ~-m
iFiST,5 ---ae--
2 iFiST,7 ---#--- “_‘_.f)....._yEi_!!‘er 3,5,7)
15
1
o5 iFiST (3,5,7) _.m
. B —, — R
0
10k 20k 30k

Size of documents

(h) Treebank (skewed, 150,000 user profiles)

Fig. 23. Varying size of XML documents.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:42 o J. Kwon et al.

Figures 23(e) through (h) shows scaleup for YFilter and iFiST for a set of
user profiles for Treebank with different numbers of user profiles and different
types of tag name distributions. The x-axis shows different document sizes: 10k,
20k, and 30k. The size 1k serves as the base case for Treebank datasets. Un-
like Auction datasets, we observed that the scaleup plots of iFiST grew more
slowly than those of YFilter, which indicated that YFilter’s filtering cost in-
creased much faster than iFiST as the size of documents increased. We ob-
served that the gap in the scaleup between YFilter and iFiST was widened
as the size of the documents increased in the uniform dataset (Figures 23(e)
through (f)). Due to heavily recursive and deep documents, YFilter had many
active states in the NFA and hence had a higher filtering cost, because its
stack grew quickly. In the skewed dataset (Figures 23(g) through (h)), iFiST
has better scaleup than YFilter. We observed that the gap became narrower for
30k. In the skewed dataset, the number of distinct tags was relatively smaller
than that in the uniform dataset. Still, due to heavily recursive and deep docu-
ments, YFilter had many active states in the NFA, and required more time to
filter.

In this particular set of experiments, there was no clear winner between
YFilter and iFiST. It appears that YFilter outperforms iFiST and vice versa for
filtering documents of different characteristics. YFilter scaled better when the
number of distinct tags was small and the documents to filter were lightly recur-
sive and shallow. On the other hand, iFiST scaled better when the number of dis-
tinct tags was large and the documents to filter were heavily recursive and deep.

7.2.4 Varying Document Selectivity. In this experiment, we measured the
effect of the document selectivity on the filtering performance. The document
selectivity is computed as follows.

Document selectivity = # of documents that matched any user profile/total
number of documents.

We fixed the number of user profiles to 75,000 and the number of documents to
3,000. The document selectivity was varied from 15% to 75%.

Figure 24 shows the performance results by varying document selectivi-
ties. We used NITF dataset 5k and Treebank dataset 10k. The filtering time
increased for both YFilter and iFiST with increase in document selectivity.
This was because more states were active during filtering for both YFilter and
iFiST. However, iFiST showed better scaleup than YFilter.

7.3 Wildcard Processing

In this experiment, we compare the filtering performance of iFiST and YFilter
when wildcards are present in twig patterns/user profiles.

The scaleup results for NITF and Treebank datasets are shown in Figure 25.
The number of user profiles indexed was fixed at 150,000 and the probability
of a wildcard “*” occurring at a location step was changed from 0.0 to 0.5. We
set Ny (number of branches) to 3, z (skewness in element distribution) to 0.0
for each dataset. The base value for computing scaleup is the the filtering time
when the probability of wildcards is set to 0.0.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns J

Scaleup

13:43

0.2
0.18 |
0.16 |
0.14
0.12
0.1

0.08
0.06
0.04 |
0.02 |

YFilter —e—
iFiST -

0

45 60 75
document selectivity (%)

(b) Treebank (10k)

Fig. 24. Varying document selectivity.

0.22 .
YFilter —e—
02t ViFST o
0.18 |
0.16 |
a 014
3
© 012
O
@ o0t
0.08 |
0.06 |
0.04 F .
0.02 <& ‘ | |
30 45 - .
document selectivity(%)
3 m
YFilter —e—
25
2
Q
3
s 1.5
’ o
4
..... o
0.5 |
0
0.1 0.2 0.3 0.4 05
probability of wildcards
4.5 i
YFilter —e—
3.5
3
g 2.5
g
1.5
1 e
........ &
o5t .
__________________ P
0
0.1 0.2 0.3 0.4 05

probability of wildcards

(c) Treebank (10k)

Scaleup

Scaleup

YFilter —o—
FIST o

0.2 0.3 0.4 0.5

probability of wildcards

(b) NITF (20k)

YFilter —e—
FiST oo

0.2 0.3 0.4 0.5

probability of wildcards
(d) Treebank (20k)

Fig. 25. Filtering performance in the presence of wildcards in twig patterns.

In both YFilter and iFiST, the filtering time increases as the probability of
wildcards increases. However, iFiST’s filtering time increases much slower than
that of YFilter and has better scaleup. YFilter’s processing time is affected by
the number of active states in its NFA during filtering. The presence of wild-
cards increases this count. As described in Section 6, iFiST also pays additional
cost for checking wildcard information (leaf/regular wildcards) and storing po-
tential matches of stack elements into BranchID sets for branch wildcards.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:44 o J. Kwon et al.

0.5 0.8
0.7
. 04 -
8 2 06
b 3
@ 03} % 05
£ £
% Z 0.4
s o2 S 03
T &
0.2
= o1} =
0.1
0 0
10 15 20 25 10 15 20 25
degree of duplicates degree of duplicates
(a) NITF/Treebank Mixed (10k) (b) NITF/Treebank Mixed (20k)
0.1 = 0.2
0.08
0.15
o 0.06 a
3 3
El F— .. . g 01
D004 f @
g
0.05
0.02
0 0
10 15 20 25 10 15 20 25
degree of duplicates degree of duplicates
(c) NITF /Treebank Mixed (10k) (d) NITF/Treebank Mixed (20k)

Fig. 26. Effect of duplicate user profiles.

7.4 Benefits of Shared Processing of User Profiles

7.4.1 iFiST versus FiST. We measured the performance impact of the
shared processing of common profile sequences described in Section 5. We cre-
ated a light-weight version of iFiST called FiST, which does not merge common
segments in the user profiles. That is, profile sharing is disabled in FiST. To
compare the performance of iFiST and FiST, we measured the filtering cost in
the wall-clock time as well as the scaleup.

We varied the number of duplicate user profiles to evaluate the efficacy of
shared processing in iFiST. We first created a set of distinct user profiles and
then replicated this set several times. The degree of duplicates is thus equal to
the number of repetitions. To generate 250,000 user profiles with degree of du-
plicates 25, we first generated 10,000 distinct user profiles and then replicated
them 25 times. For concise exposition, we carried out a set of experiments with
a mixed set of user profiles created by choosing half the profiles from NITF and
the other half from Treebank. The number of user profiles indexed was varied
from 50,000 to 250,000 by changing the degree of duplicates from 5 to 25. We
set p;; t0 0.2, Ny to 3, z to 0.8 for each DTD. We set L to 6 for NITF and 10 for
Treebank. The set of input documents contained a mix of 500 NITF and 500
Treebank documents. The documents were grouped into “10k” and “20k”.

Figures 26(a) and 26(b) summarize the wall-clock time spent by FiST and
iFiST. An increasing trend in the filtering time was observed while the degree

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:45

0

FiST —e—
YFilter @ 01

FST —o— oS
YFilter @ -0.05

-0.1

YFilter —e—
FiST @

-0.2
-0.15 -0.3

-0.4

Scaleup

-0.2

Scaleup
S
o
&
Scaleup

0.25 e, 05
0.3 L 06
"o 0.35 To... 0.7 .

0.4 o 08

degree of duplicates degree of duplicates degree of duplicates

(a) Auction (b) NITF (c) Treebank

Fig. 27. Comparison between iFiST and YFilter by varying the degree of duplicates.

of duplication was increased. This was because the number of user profiles in-
creased as the degree of duplicates increased. More importantly, iFiST consis-
tently outperformed FiST, and the performance gap between them widened as
the degree of duplicates increased. This improvement was a direct consequence
of the shared processing of user profiles.

Figures 26(c) and 26(d) show the scaleup performance of FiST and iFiST. In
these figures, the degree of 5 for duplicate profiles was used as the base case.
The scaleup patterns were almost identical for both iFiST and FiST, but the
scaleup of iFiST was consistently better than that of FiST.

7.4.2 iFiST versus YFilter. We also compared iFiST with YFilter to see the
impact of the shared processing. For this purpose, we fixed the number of user
profiles to 75,000 and varied the degree of duplicates from 1 through 5. The
input document set was 20k.

Figure 27 shows the scaleup for different degree of duplicates. We observed
negative values of scaleup for both systems, which implied that the execution
time decreased with increase in the degree of duplicates. This shows that shared
processing of user profiles is essential for high performance. While YFilter had
better performance than iFiST for Auction and NITF datasets, iFiST had better
performance than YFilter for Treebank dataset. The reason is explained in
Section 5.2.3.

7.5 Memory Usage of iFiST

7.5.1 iFiST versus FiST. We investigated memory usage by iFiST and
FiST for filtering XML documents. We measured total memory consumption
by reading the statistics given in /proc/self/statm, which provides memory
statistics of processes.

First, we measured the memory consumption by fixing the number of user
profiles to 75,000 but varying the degree of duplicates from 1 to 5. The input
document set was 20k. As is shown in Figure 28, we observed that iFiST con-
sumed approximately 20% to 40% less memory than FiST in most cases. The
memory usage of FiST remained almost the same, whereas that of iFiST de-
creased as the degree of duplicates increased. This can be explained by the
profile statistics given in Table IV. The number of sequence nodes, which af-
fects the memory consumption by FiST, remained almost the same as the degree
of duplicates increased. In contrast, the size of a segment table, which affects

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:46 . J. Kwon et al.
80
T FIST —+— T ——
IFIST e 80 R 80 (R ———
70
@ @ @
g gn gn
2 60 2 °
g g 60 g 60
2 2 H
> > > o
g % g 50 g s0 .
5 . g | TS - H g
40 b & e . . 40 e - 40 I O 'S
30 30 30

degree of duplicates

(a) Auction

degree of duplicates

(b) NITF

degree of duplicates

(c) Treebank

Fig. 28. Memory usage of FiST and iFiST.

Table IV. User Profile Statistics

of Segments in

DTD D, | # of Sequence Nodes | # of Segments | the Segment Table

1 1,237,706 295,645 40,859

2 1,233,870 295,658 23,903
Auction 3 1,299,688 295,689 17,498

4 1,232,692 295,468 14,255

5 1,230,395 295,555 11,986

1 1,179,274 299,327 54,139

2 1,176,070 299,328 31,130
NITF 3 1,174,323 299,343 22,660

4 1,175,540 299,312 18,155

5 1,174,895 299,355 15,174

1 1,194,958 298,209 117,896

2 1,195,196 298,224 63,721
Treebank | 3 1,194,414 298,143 44,387

1 1,198,468 298,024 34,322

5 1,195,295 298,105 28,167

the memory consumption by iFiST, decreased considerably as the degree of
duplicates increased.

Second, we examined the effect of input document sizes on memory usage.
We show only the results from Treebank because the results from other DTDs
showed trends similar to that of Treebank. The number of user profiles was
fixed at 75,000, whereas the degree of duplicates was varied from 1 to 3. The
sizes of input XML documents ranged from “5k” to “20k”. The results are shown
in Figure 29(a). The memory consumption by iFiST and FiST was insensitive
to the sizes of input documents. This is because the size of a runtime stack, for
both iFiST and FiST, is bounded by the depth of an input document. The aver-
age depth of input documents increased only slightly as the size of document
increased, as shown in Table V.

In summary, iFiST has demonstrated that it can reduce overall memory
requirement considerably by shared processing of user profiles, and its memory
requirement is not affected by the size of input documents.

7.5.2 1FiST versus YFilter. Both iFiST and YFilter use a runtime stack
but for fundamentally different purposes. iFiST uses a runtime stack to store
the elements along a path from the current element being processed to the root
of the document. The size of a runtime stack is thus bounded by the depth of

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns . 13:47

100 T T - 120 T T
FiST1 —— Treebank,2 —»—
FiST,2 ---g---er 110 Auction,2 -y |
90 r FIST,3 e |] NITF.2 -
o iFiST,1 * & 100 J
80 | iFIST,2 == | | ///'
= iFiST,3 ---a--- s 90
[()
o 70} N 1 o 80
3 S 7wt
> 60 =
o o L
GE) . - * GE) 60
2 50 S 50t
i i A IS -4
4r) 40 ¢ s T
s ¥
30 — : : : : :
5k 10k 20k 5k 10k 20k
sizes of documents sizes of documents
(a) iFiST (b) YFilter

Fig. 29. Memory usage of iFiST and YFilter for varying document sizes.

Table V. Average Depth of Input Documents

Sizes of DTDs

Document | Auction | NITF | Treebank
5k 10.79 8.13 18.59
10k 11.45 8.98 20.91
20k 12.07 9.41 21.00

a document being processed. On the other hand, YFilter uses a runtime stack
to track the active and previously processed states during the execution of its
NFA. Since YFilter runs on a Java virtual machine, we measured memory con-
sumptions of YFilter by using the functions totalMemory () and freeMemory ()
in the Runtime class. The functions totalMemory() and freeMemory() return
the total amount of memory and the amount of free memory in the Java vir-
tual machine, respectively. The memory consumption of YFilter is computed by
subtracting freeMemory () from totalMemory().

We measured the memory consumption of iFiST and YFilter by fixing the
number of user profiles to 75,000 and varying the degree of duplicates from 1 to
5. The input document set was 20k. In Figure 30, we observed a downward trend
in memory usage with increase in the degree of duplicates. As the degree of
duplicates increased, the memory usage of YFilter decreased more considerably
than that of iFiST. Although the number of segments reduced with the degree
of duplicates in iFiST, the elements in the candidate list of the segment table
were not shared among twig patterns and the number of elements were still
large during the subsequence matching. This is why the memory consumption
of iFiST did not reduce considerably. As future work, we plan to improve the
sharing in the candidate list.

We also examined the effect of input document sizes on memory usage for
YFilter. Recall that the memory consumption of iFiST was insensitive to the
document sizes. (See Figure 29(a).) We show only the results when the degree
of duplicate is 2 because the results from other DTDs showed similar trends.
The number of user profiles was fixed at 75,000. The results are shown in
Figure 29(b). The memory consumption by YFilter increased as the size of

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:48 o J. Kwon et al.

70

160
140
120

VETter,20k —+—
0k -

YFilter,20k —+—
iFiST.2 iFiST.20k -

60

50 100
80
60
40

25 20

20 20 0

40

Memory usage (MB)

Memory usage (MB)
N
&

Memory usage (MB)

30

degree of duplicates degree of duplicates degree of duplicates

(a) Auction (b) NITF (c) Treebank

Fig. 30. Memory usage iFiST and YFilter.

documents increased. The memory consumption of YFilter for Auction and
NITF datasets increased by 30% from 5k to 20k.

7.6 Summary

We have carried out empirical evaluation of iFiST, in comparison with YFil-
ter and FiST, under various operational conditions with datasets of different
characteristics. The results from the experiments are summarized next.

—iFiST scaled better than YFilter with an increasing number of user profiles
and documents of growing size, when the number of distinct tags was rela-
tively large and the documents to filter were heavily recursive and deep (e.g.,
Treebank).

—On the other hand, when the number of distinct tags was relatively small
and the documents to filter were lightly recursive and shallow (e.g., Auction),
YFilter scaled better than iFiST with an increasing number of user profiles
and documents of growing size.

—iFiST always scaled better than YFilter with an increasing number of
branches in the user profiles.

—The performance benefit gained from shared processing of common user pro-
files was significant. When the degree of duplication was high in the set of
user profiles, iFiST was up to approximately 48% faster and consumed about
40% less memory than FiST.

—The performance of iFiST was insensitive to the sizes of input documents to
filter.

8. CONCLUSION

XML-enabled publish-subscribe (pub-sub) systems play an increasingly impor-
tant role in e-commerce and Internet applications for selectively disseminating
information to subscribed users with matching interests. One of the key chal-
lenges posed by the pub-sub systems is to provide scalable services for a poten-
tially large and increasing number of subscribers in a timely fashion. To rise
to this challenge, we have developed a novel XML document filtering system
called iFiST. The iFiST system adopts a tree-to-sequence mapping strategy so
that each incoming XML document can be holistically matched up against a
set of user profiles of twig patterns in a bottom-up manner. Unlike the previous

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:49

pub-sub systems, the holistic matching allows us to find all matching user pro-
files without breaking a twig pattern into multiple linear paths and matching
them separately. The iFiST system reduces the filtering time and the memory
consumption even further by avoiding redundant processing of user profiles
with common patterns.

Our experimental study shows that iFiST can outperform the state-of-the-
art filtering system, YFilter, by achieving superior scalability, particularly
when user profiles consist of complex XPath expressions and XML documents
are heavily recursive and deep. Considering the fact that iFiST supports or-
dered twig pattern matching, iFiST is believed to deliver desirable services
for applications that require order-sensitive filtering of deeply nested XML
documents against user profiles consisting of complex and detailed XPath
expressions.

ACKNOWLEDGMENTS

We would like to thank Yanlei Diao and her colleagues for providing the YFilter
code for our experiments. We are also grateful to the anonymous reviewers for
their constructive comments.

REFERENCES

ArriNeL, M. AND Frankuin, M. J. 2000. Efficient filtering of XML documents for selective dissem-
ination of information. In Proceedings of the 26th VLDB Conference. 53—64.

AracHE. Apache Xerces C++ parser. http:/xml.apache.org/xerces-c/.

BAR-YossEF, Z., FonTouRA, M., AND JosiFovski, V. 2004. On the memory requirements of XPath
evaluation over XML streams. In Proceedings of the 23rd ACM Symposium on Principles of
Database Systems. 177-188.

Bar-YossEF, Z., FoNTOURA, M., aAND Josirovskr, V. 2005. Buffering in query evaluation over XML
streams. In Proceedings of the 24th ACM Symposium on Principles of Database Systems. 216—
2217.

BEeRGLUND, A., Boag, S., CHAMBERLIN, D., FErRNGNDEZ, M. F., Kay, M., ROBIE, J., AND SiméoN, J. XML
path language (XPath) 2.0. http://www.w3.org/TR/xpath20/.

Boag, S., CHaMBERLIN, D., FERNGNDEZ, M. F., FLorESCU, D., ROBIE, J., AND SivéoN, J. XQuery 1.0: An
XML query language. http:/www.w3.org/TR/xquery/.

Bow, C., HucHES, B., AND Birp, S. 2003. Towards a general model of interlinear text. In Proceedings
of EMELD Workshop.

Bruno, N., Gravano, L., Koupas, N., AND Srivastava, D. 2003. Navigation- vs. index-based XML
multi-query processing. In Proceedings of the 19th IEEE International Conference on Data En-
gineering. 139-150.

Bruno, N., Koupas, N., AND Srivastava, D. 2002. Holistic twig joins: Optimal XML pattern match-
ing. In Proceedings of the 2002 ACM-SIGMOD Conference.

Canpan, K. S., Hstung, W.-P., CHEN, S., TATEMURA, J., AND AGrawaL, D. 2006. AFilter: Adaptable
XML filtering with prefix-caching and suffix-clustering. In Proceedings of the 32nd VLDB Con-
ference. 559-570.

CARrzANIGA, A., RUTHERFORD, M. J., AND WoLF, A. L. 2004. A routing scheme for content-based
networking. In Proceedings of IEEE InfoCom 2004. 918-928.

CastrO, M., DRUSCHEL, P., MARIE KERMARREC, A., AND RowsTRON, A. 2002. Scribe: A large-scale
and decentralized application-level multicast infrastructure. IEEE oJ. Select. Areas Comm. 20, 8,
1489-1499.

Cuan, C. Y., FELBER, P., GaroraLakis, M. N., aND Rastoci, R. 2002a. Efficient filtering of XML
documents with XPath expressions. In Proceedings of the 18th IEEE International Conference on
Data Engineering. 235-244.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

13:50 o J. Kwon et al.

CHan, C. Y., FeLBER, P., GarRoFaLAKIS, M. N., AND Rastoci, R. 2002b. Efficient filtering of XML
documents with XPath expressions. VLDB J. 11, 4, 354-379.

CHaN, C. Y. AND N1 Y. 2007. Efficient XML data dissemination with piggybacking. In Proceedings
of the ACM-SIGMOD Conference. 737-748.

CuanDraMOULI, B., PHILLIPS, J., AND Yang, J. 2007. Value-Based notification conditions in large-
scale publish/subscribe systems. In Proceedings of the 33rd VLDB Conference. 878-889.

CHEN, S., L1, H.-G., TATEMURA, J., Hs1unG, W.-P., ArawaL, D., AND CaNDAN, K. 8. 2006a. Twig? Stack:
Bottom-Up processing of generalized-tree-pattern queries over XML documents. In Proceedings
of the 32nd VLDB Conference. 283—-294.

CHEN, Y., DavipsoN, S. B., AND ZHENG, Y. 2006b. An efficient XPath query processor for XML
streams. In Proceedings of the 22nd IEEE International Conference on Data Engineering. 79.
CHiy, A.-T. anp Hsy, J.-L. 2006. An automaton-based filtering system for streaming mu-
sicxml. In Proceedings of the International Conference on Semantic Web & Web Services. 177—

178.

CLARK, J. 1999. XSL transformations (XSLT) version 1.0. http://www.w3.org/TR/xslt/.

Diao, Y., ALTINEL, M., MicHAEL J. FRANKLIN, H. Z., AND FiscHER, P. 2003. Path sharing and predicate
evaluation for high-performance XML filtering. ACM Trans. Datab. Syst. 28, 4, 467-516.

Diao, Y., Rizvi, S., AND FRANKLIN, M. J. 2004. Towards an Internet-scale xml dissemination service.
In Proceedings of the International Conference on Very Large Databases. 612—623.

Diaz, A. L. anp Loverr, D. 1999. XML generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

FENNER, W. AND Srivastava, D. 2005. XTreeNet: Scalable overlay networks for XML content dis-
semination and querying. In Proceedings of the 10th International Workshop on Web Content
Caching and Distribution. 41-46.

Gong, X., Yan, Y., Qian, W., anDp Zuou, A. 2005. Bloom filter-based XML packets filtering for
millions of path queries. In Proceedings of the 21st IEEE International Conference on Data En-
gineering. 890-901.

GreEN, T. J., GUPTA, A., MikLAU, G., ON1zUKA, M., AND Sucty, D. 2004. Processing XML streams
with deterministic automata and stream indexes. ACM Trans. Datab. Syst. 29, 4, 752-788.

GreeN, T. J., MikLau, G., ONizuga, M., anp Sucty, D. 2003. Processing XML streams with de-
terministic automata. In Proceedings of the 9th International Conference on Database Theory.
173-189.

Gupta, A. K. anD Sucty, D. 2003. Stream processing of XPath queries with predicates. In Pro-
ceedings of the ACM-SIGMOD Conference. ACM Press, 419-430.

Hg, B., Luo, Q., anp CHor, B. 2005. Cache-Conscious automata for XML filtering. In Proceedings
of the 21st IEEE International Conference on Data Engineering. 878-889.

He, B, Luo, Q., anp CHor, B. 2006. Cache-Conscious automata for XML filtering. IEEE Trans.
Knowl. Data Eng. 18, 12, 1629-1644.

Hong, M., DEMERS, A. J., GEHRKE, J., KocH, C., RiIEDEWALD, M., AND WHITE, W. M. 2007. Massively
multi-query join processing in publish/subscribe systems. In Proceedings of the ACM-SIGMOD
Conference. 761-772.

Hou, S. anp JacoBsen, H.-A. 2006. Predicate-Based filtering of XPath expressions. In Proceedings
of the 22nd IEEE International Conference on Data Engineering. 53.

Kwon, J., Rao, P, Moon, B, axp LEg, S. 2005. FiST: Scalable XML document filtering by sequenc-
ing twig patterns. In Proceedings of the 31st VLDB Conference. 217-228.

Kwon, J., Rao, P., Moon, B., axp LEg, S. 2007. Value-Based predicate filtering of streaming XML
data. In Proceedings of the 1st International Workshop on Data Management in Ubiquitous Com-
puting. 266-271.

Kwon, dJ., Rao, P, Moon, B., aND Leg, S. 2008. Value-Based predicate filtering of XML documents.
Data Knowl. Eng. 67,1, 51-73.

Lewis, W. D. Personal communications. http://zimmer.csufresno.edu/ wlewis/.

Li, G, Hou, S., anp Jacossen, H.-A. 2008. Routing of XML and XPath queries in data dissemi-
nation networks. In Proceedings of the 28th International Conference on Distributed Computing
Systems. 627-638.

L1, Q. anxpD Moon, B. 2001. Indexing and querying XML data for regular path expressions. In
Proceedings of the 27th VLDB Conference. 361-370.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

Fast XML Document Filtering by Sequencing Twig Patterns o 13:51

Ly, J., Cuen, T, anp Ling, T. W. 2004. Efficient processing of xml twig patterns with parent
child edges: A look-ahead approach. In Proceedings of ACM the 13th International Conference on
Information and Knowledge Management. 533—-542.

LupdascHER, B., MUKHOPADHYAY, P., AND PAPAKONSTANTINOU, Y. 2002. A transducer-based XML query
processor. In Proceedings of the 28th VLDB Conference. 227-238.

Mecainson, D. Simple API for XML. http:/sax.sourceforge.net/.

Miiarakt, 1., Kaoupr, Z., anD KouBarakts, M. 2008. Xml data dissemination using automata on
top of structured overlay networks. In Proceedings of the 17th International World Wide Web
Conference. ACM, New York, 865-874.

Miro, T., Zur, T., AND VERBIN, E. 2007. Boosting topic-based publish-subscribe systems with dy-
namic clustering. In Proceedings of the ACM-SIGMOD Conference. 749-760.

Moro, M. M., BakaLov, P., aND TsoTras, V. J. 2007. Early profile pruning on XML-aware publish-
subscribe systems. In Proceedings of the 33rd VLDB Conference. 866-8717.

MuLLER, K. 2004. Semi-Automatic construction of a question treebank. In Proceedings of the 4th
International Conference on Language Resources and Evaluation.

MusicXML. MusicXML definition. http://www.recordare.com//xml.html.

NITF. NITF: News industry text format. http://www.nitf.org/.

PENG, F. AND CHAWATHE, S. S. 2003. XPath queries on streaming data. In Proceedings of the ACM-
SIGMOD Conference. ACM Press, 431-442.

PrUFER, H. 1918. Neuer Beweis eines satzes tiber permutationen. Archiv fiir Mathematik und
Physik 27, 142-144.

RAMASUBRAMANIAN, V., PETERSON, R., AND SIRER, E. G. 2006. Corona: A high performance publish-
subscribe system for the World Wide Web. In Proceedings of the 3rd Conference on Networked
Systems Design & Implementation (NSDI'06). USENIX Association, 2—2.

Rao, P, Capros, J., KHARE, V., MooN, B., AND ZHanG, B. 2007. Net-x: Unified data-centric In-
ternet services. In Proceedings of 3rd International Workshop on Networking Meets Databases
(NetDB’07).

Rao, P. aND Moon, B. 2004. PRIX: Indexing and querying XML using Prifer sequences. In Pro-
ceedings of the 20th IEEE International Conference on Data Engineering. 288-299.

Rao, P. aND Moon, B. 2006. Sequencing XML data and query twigs for fast pattern matching.
ACM Trans. Datab. Syst. 31, 1, 299-345.

SHAH, R., RamzaN, Z., JaiN, R., DENDUKURI, R., aND Angum, F. 2004. Efficient dissemination of
personalized information using content-based multicast. IEEE Trans. Mobile Comput. 3, 4, 394—
408.

Tian, F., REnwaLD, B., PirangsH, H., MAYR, T., AND MyLLYMAKI, J. 2004. Implementing a scalable
XML publish/subscribe system using a relational database system. In Proceedings of the ACM-
SIGMOD Conference. 479-490.

TREEBANK. The Penn treebank project. http:/www.cis.upenn.edu/ treebank/.

XMark. XMark - An XML benchmark project. http:/www.xml-benchmark.org/.

Yan, T. W. aND GARcIA-MoLiNa, H. 1999. The SIFT information dissemination system. ACM Trans.
Datab. Syst. 24, 4, 529-565.

Received October 2008; revised June 2009; accepted July 2009

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 13, Publication date: September 2009.

