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Abstract. A Lombardi drawing of a graph is defined as one in which vertices
are represented as points, edges are represented as circular arcs between their
endpoints, and every vertex has perfect angular resolution (angles between con-
secutive edges, as measured by the tangents to the circular arcs at the vertex, all
have the same degree). We describe two algorithms that create “Lombardi-style”
drawings (which we also call near-Lombardi drawings), in which all edges are
still circular arcs, but some vertices may not have perfect angular resolution. Both
of these algorithms take a force-directed, spring-embedding approach, with one
using forces at edge tangents to produce curved edges and the other using dummy
vertices on edges for this purpose. As we show, these approaches both produce
near-Lombardi drawings, with one being slightly better at achieving near-perfect
angular resolution and the other being slightly better at balancing vertex place-
ments.

1 Introduction
The American artist, Mark Lombardi, was known for his drawings of social networks of
conspiracy theories, which use circular arcs for edges and have a nice aesthetic place-
ment for both vertices and edges (e.g., see Figure 1).

Fig. 1. Mark Lombardi’s WFC 1970-84 [26].



Inspired by Lombardi’s work, Duncan et al. [11, 12] introduce the concept of a
Lombardi drawing, which is a drawing that uses circular arcs for edges and achieves
the maximum (i.e., perfect) amount of angular resolution possible at each vertex. Their
methods are deterministic, not force-directed, but, as they show, there are several types
of graphs that cannot be drawn perfectly as Lombardi drawings. Thus, these negative
results motivate a relaxation of their requirement that drawings achieve perfect angular
resolution at every vertex.

Nevertheless, we know from experimental studies that angular resolution has a sig-
nificant impact on the readability of a graph [29, 30]. Thus, our goal in this paper is to
study the degree to which one can achieve good angular resolution at vertices by using
the Lombardi-inspired approach of embedding edges as circular arcs.

Force-directed layout algorithms, also known as “spring embedders,” are known
for the balanced types of drawings they produce, in terms of vertex and edge place-
ment, using straight-line edges (e.g., see [1, 2, 7, 17–19]). Still, straight-line segments
rarely occur in nature; hence, it is not clear that humans prefer straight-line segments
for the sake of graph readability, and, indeed, the work of Mark Lombardi suggests
that they don’t. (See also Fig. 2.) Therefore, the approach we are interested in studying
in this paper is that of designing force-directed graph-drawing algorithms that allow
for circular-arc edges and include forces that tend to spread those edges more evenly
around vertices. We feel this approach can result in drawings that appear even more
natural than can be achieved using straight-line edges.

Fig. 2. Examples of standard straight-line and Lombardi-style drawings.
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1.1 Related Work

There are several graph drawing methods that use circular-arc edges or curvilinear poly-
edges. For example, Goodrich and Wagner [21] give algorithms for drawing planar
graphs using Bézier splines for edges, and Cheng et al. [6] describe a scheme for draw-
ing graphs using circular arc poly-edges. Several groups of researchers have also studied
confluent drawings [9, 14, 15, 23], which bundle edges together in smooth curves so as
to reduce crossings.

There is, of course, a wealth of existing work on force-directed graph drawing. So,
rather than review all of this previous related work, let us refer the reader to some of
the excellent books and articles that survey the subject (e.g., see [1, 2, 7, 17–19]), and
focus here on the most related papers on this topic. Holten and van Wijk [24] give a
force-directed method for producing an edge-bundled drawing that is similar to a con-
fluent drawing. Brandes and Wagner [5] describe a force-directed method for drawing
train connections, where the vertex positions are fixed but transitive edges are drawn
as Bézier curves (see also [3]). Finkel and Tamassia [16], on the other hand, describe
a force-directed method for drawing graphs using curvilinear edges where vertex po-
sitions are free to move. Their method is based on adding dummy vertices, as one of
our methods does, but their dummy vertices serve as control points for Bézier curves,
rather than circular arcs, and their drawings do not achieve locally-optimal edge reso-
lution at the vertices. Matsakis [28] describes a force-directed approach to producing a
Lombardi-style drawing, which is based on iteratively visiting each vertex v and making
adjustments locally with respect to v. Unfortunately, he does not evaluate his method
experimentally and it is not clear that it always converges.

There is also considerable amount of additional work studying angular resolution
for drawings that addresses the problem in the straight-line setting [8, 20, 27]. Polyline
edges have also been studied in the context of drawing planar graphs with good angular
resolution [21, 22, 25]. In addition, rotating optimal angular resolution templates for
each vertex in the fixed position setting has been studied as well [4].

1.2 Our Results

In this paper, we describe two force-directed algorithms for producing Lombardi-style
(or near-Lombardi) drawings of graphs, where edges are drawn using circular arcs with
the goal of maximizing the angular resolution at each vertex. Our first approach is based
on a technique of applying forces at the tangents where edges meet vertices, so as to
spread those tangents out as much as possible. Our second approach is instead based on
a technique of using dummy vertices on each edge with repellent forces to “push out”
the circular arcs representing edges, so as to provide an aesthetic “balance.”

We have implemented the two algorithms and tested them on several graphs. We
provide experimental evidence that our approaches yield drawings that have both a vi-
sual appeal and an increased angular resolution. We give explicit demonstrations for
well-known symmetric graphs, random graphs, and even a graph drawn by Lombardi
himself. We also provide a comparative analysis of the two approaches, which suggests
that the tangent-based method is in general better at achieving the highest angular res-
olution possible, while the dummy-vertex approach is better in general at balancing the
placement of vertices.
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2 A Tangent-Based Lombardi Spring Embedder Formulation
Force-directed algorithms treat a given graph as a physical system, where the vertices
represent points in an N-body mechanics problem. In the system set up by Eades, ver-
tices are treated as steel rings and the edges are springs that obey Hooke’s Law [13].
Fruchterman and Reingold describe a model in which a strong nuclear force attracts two
protons within the atomic nucleus at close range, while an electrical force repels them
at farther range [17]. Although inspired by physics, most force-directed algorithms do
not attempt to mimic physical laws precisely.

Similar to most force-directed layout algorithms, our tangent-based Lombardi spring
embedder assigns a force to each vertex and aims to minimize the overall energy of the
system. There are three forces which affect vertex position, and one force which affects
the radius of the circular arcs between a pair of vertices connected by an edge.

The attractive force, Fa, pulls vertices connected by edges closer together. It is
applied to every pair of vertices connected by an edge as follows:Fa = (d−k)/d, where
d is the current distance between the two vertices and k is a constant representing the
ideal spring length.

The repulsive force, Fr, pushes vertices apart. It is applied to every pair of vertices
using the following formula: Fr = k2/d3.

The tangential and rotational forces make it possible for circular arcs to be drawn
between vertices, while maintaining a perfect (or near-perfect) angular resolution. To
help compute the two forces, we augment each vertex with an orientation and fixed
tangents, which dictate how to draw the arc. The angles between the tangents are equal
and remain fixed, while the vertex itself can be rotated by changing its orientation with
respect to the origin. Note that the angle of a tangent at one vertex must equal the angle
of a tangent at the other vertex for an arc to be possible between them. Here, angles are
measured with respect to the segment connecting two vertices; see Fig. 3.

The tangential force, Ft, attempts to move vertices in such a way as to make a
circular arc possible between any pair of vertices connected by an edge. To compute
this force we need to find the optimal position of a vertex with respect to its neighbor.

(a) (b) (c) (d)

Fig. 3. Lombardi forces move and rotate vertices so that all corresponding tangents have
matching angles, allowing for feasible circular arcs. (a) An illustration of pre-assigned
tangents for a given degree-3 vertex. The angles between the tangents are equal and
remain fixed, while the vertex itself can be rotated by changing its orientation with respect
to the origin (currently 35◦ as indicated by the green line); (b) If the angles differ, then
there cannot be a common circular arc between them; (c) If the angles are equal, there
is a unique circular arc between them; (d) The tangential force for vertex 2 with respect
to vertex 1 attempts to achieve matching outgoing angles from the two vertices.
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Fig. 4. Perfect Lombardi drawings of C5, K3,3 and K5, with shown tangents.

The magnitude of the force is proportional to the distance between this optimal position
and the current position, and the direction is towards the optimal position. It is applied
to every pair of vertices that share an edge as follows: Ft = A × d, where d is the
distance between current and optimal positions, and A is the tangential force constant.

The rotational force, Fρ, does not attempt to move vertices, but to rotate a vertex
and its tangent template so as to make the tangent angles match, thereby making the
arc between two vertices possible. To compute the rotational force we find the optimal
angle of a tangent and subtract the current angle as follows:Fρ = B ×∆angle, where
∆angle is the rotation required and B is a small constant. For each vertex v, the three
appropriately scaled movement forces are added together to the rotational force in order
to determine the overall force acting on the vertex: F (v) = Fa + Fr + Ft + Fρ.

The following cooling function is used to determine the magnitude of the force in
terms of the number of iterations: T (i) = (T0 ∗ (M − i))/M , where i is the itera-
tion number and M is the maximum number of iterations. T0 is calculated as follows:
T0 = K ∗

√
n/5, where K is the ideal spring length and n is the number of vertices.

Experimentally determined values for the constants we use are K = 0.3, M = 600,
A = 0.9, B = 0.5; see Fig. 4 for examples on some simple graphs.

Note that as described the algorithm assumes a fixed order of the neighbors around
each vertex. Fixing such an order can be very limiting in computing a Lombardi draw-
ing. With this in mind we allow for modifying the order of adjacencies by shuffling the
tangents at the beginning of each iteration to find a lower energy state. If the number
of tangents (i.e., degree of a vertex) is small, we try every permutation to find the one
with the minimal energy. If the number of tangents is large we move one tangent at a
time. The energy function that we try to minimize with this shuffling is similar to the
rotational force. Recall that when we compute the rotational force, we were interested
in the net force for each vertex. With this shuffling force, however, we are interested in
the total force (the sum of absolute values of each contributing rotation).

2.1 A Tangent-Based Near-Lombardi Spring Embedder

As not all graphs are Lombardi graphs [10], and our algorithm cannot guarantee that it
will find a Lombardi drawing even if one does exist, when needed we relax the perfect
angular resolution constraint. If the above tangent-based Lombardi Spring Embedder
has failed to find optimal positions for every vertex, we modify the tangents of vertices
which have infeasible edge constraints.

For tangents of adjacent vertices that have unequal angles, we move each tangent to
the average of both tangents’ positions. Now we can draw circular arcs between all con-
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nected vertices with minimal loss of angular resolution. As the change in tangents may
be too drastic, we improve the angular resolution by another round of force-directed
simulation. Rather than change the position and rotation of vertices as we did before,
here we only modify tangent angles (which were fixed before). This new force is based
on the observation that a tangent should be in the middle of two tangents clockwise and
counter-clockwise from it. We find this midpoint and compute the force which is pro-
portional to the required rotation to get the tangent there: FNL = C ×∆angle, where
∆angle is the difference between current angle and optimal angle, and C is a constant.
In order to maintain the “equal tangent angles” rule, we compute the force using both
of the tangents along an edge, and apply it equally to both of them.

For near-Lombardi drawings we need a measure of quality. As all edges are still
circular arcs, the only violations are at vertices where perfect angular resolution could
not be achieved. With this in mind, we define the Lombardiness of a drawing to be a
number in the range 0 to 100, defined by the average deviation from perfect angular
resolution. To compute this value we add the deviations over all angles and all vertices∑

v∈V ∆angle/2|E| and scale to the 0-100 range dividing by 1.8 (as the maximum
value of ∆angle is 180).

Note that this measure of Lombardiness can be applied to all drawings we compute,
as well as to straight-line drawings computed by a standard force-directed method (after
all, straight-line segments are circular arcs with radius infinity). Fig. 5 shows several
pairs of graphs drawn with a standard force directed embedder and with our tangent-
based Lombardi spring embedder, along with their Lombardiness scores. For 80% of
the 5451 graphs in the Rome library with 50 vertices or less, we obtain Lombardiness
scores of 98 or higher, while very few have scores in the low 90’s.

A web-enabled demo, as well as complete source code, image libraries, and several
movies illustrating this tangent-based algorithm at work can be found at http://
lombardi.cs.arizona.edu.

Lombardiness = 76 Lombardiness = 83 Lombardiness = 70 Lombardiness = 70

Lombardiness = 99 Lombardiness = 98 Lombardiness = 94 Lombardiness = 93

Fig. 5. Standard force-directed drawings (above) and near-Lombardi drawings (below).
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3 A Dummy-Vertex Approach to Lombardi-Style Drawings
Brandenburg et al. have experimentally shown [1] that different force-directed methods
can produce results with various trade-offs for aesthetic criteria. Thus, to allow for
freedom with respect to these criteria, we built a second Lombardi-style force-directed
method that allows for choice in the underlying force-directed algorithm. This method
relies on a simple two-step process so as to allow an augmentation that can be applied
to existing force-directed approaches. The first step involves using an existing straight-
line force-directed method to place vertices and the order of edges around them, and
the second step applies a force-directed approach based on the use of dummy vertices
to maximize angular resolution at the vertices through the use of circular-arc edges.

As mentioned above, one of the simplest forms of the force-directed approach is to
use linear springs for edges and charged particle repulsion for vertices, to achieve near-
uniform edge length and node distribution respectively. In this approach, each edge in
the input graph is represented by a spring, and each node a charged particle. If adjacent
nodes are spread too far, the difference between the spring length and its resting state is
large, so the nodes will be strongly pulled together. As nodes grow close, the repulsion
forces, whose strength is calculated relative to the inverse-square of the distance, pushes
vertices apart. Thus, the forces act to negotiate the nodes into equilibria.

Practically speaking, this gradient-descent relaxation is done by calculating the sum
of forces acting on each node, in turn, calculating spring forces from neighbors and re-
pulsive forces from all other nodes. This summation results in an update vector, which
is then applied so that the node is moved a small amount in the direction of the up-
date vector. This update vector is calculated for all nodes, and then they are adjusted.
This small vectored movement is then iterated until the graph achieves a minimal (or
approximately near-minimal) energy state.

Our force-directed algorithm based on the use of dummy vertices functions in two
phases. Each phase consists of iterated force-directed updates, as in the standard gradient-
descent approach. The first phase places the nodes of the graph. This phase proceeds as
has been described above, and is standard for straight-line force-directed algorithms.

Once we have placed the nodes of the graphs we begin our second phase. First,
we assign to each edge an additional “dummy” vertex that is placed at the midpoint
of that edge. A valuable observation is that once the endpoints of an edge have been
placed, only one more point is required to uniquely determine a circular arc between
these points. Thus, we can describe all possible arcs between nodes by the set of points
along the perpendicular bisector of their straight-line connection (see Fig. 6).

Fig. 6. Points along the perpendicular bisector will determine an arc.
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The responsibility for moving an edge will be given to the additional node we have
added to that edge. We then proceed to use the force-directed method to place the edge
nodes. Each (dummy) edge node will consider the nodes that it connects as neighbors,
and the partial edges as springs with a fractional resting length. Moreover, each edge
node will repulse from all other nodes, both the original graph nodes and other edge
nodes. The sum force vector is calculated as before, but will be used to move the node
in a modified way. If u is the sum force update vector we consider only its motion along
the perpendicular bisector. This projection will determine a new update vector u′ that we
will use to move the edge node (See Fig. 7). Using u′ we will make a small movement of
the edge node, maintaining a circular arc edge. The edge nodes are updated iteratively
until they reach equilibrium. At this point, our algorithm completes.

u
u�

Fig. 7. The update vector u′ used will be the projection of the sum force vector u.

In Figure 8, we provide a scan of a drawing of Lombardi and the result of our
method applied to the same graph.

Fig. 8. The graph for Lombardi’s Hans Kopp, Trans K-B and Shakarchi Trading [26], shown as
rendered by Lombardi and as rendered by our force-directed method based on the use of dummy
vertices.

In Figure 9, we show the evolution of our algorithm through various substeps of the
two phases.
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Fig. 9. A five-node graph with center node initially displaced. Selected stages of the force-directed
placement are shown. The top two rows show phase 1 and the bottom two show phase 2.
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4 A Comparative Analysis

In this section, we provide a comparative analysis of our two methods. Already from
the visual examples of graphs generated by the two methods (e.g., see Fig. 13 in the
appendix), we can see that the two approaches result in varied aesthetic qualities.

As mentioned above, both algorithms use forces to increase angular resolution in
their final drawings, but their alternative approaches can have different results. For in-
stance, in the tangent-based approach, the tangents of a node’s edges have direct control
over the angular resolution of that node, and this method does not take node positions
as fixed. Thus, the tangent-based approach is able to achieve near-perfect angular res-
olution on all nodes. The dummy-vertex approach, on the other hand, starts from node
positions determined by a straight-line force-directed method and moves edges into
open space using dummy vertices. Since it does not directly consider the angle of other
outgoing edges incident on the same vertex, it is not as successful in approaching perfect
angular resolution. Nevertheless, it does improve angular resolution over straight-line
drawings. To verify these observations, we performed an experimental analysis involv-
ing 250 graphs in the Rome library, and visualized their Lombardiness scores against
their size in a scatter plot, which is shown Fig. 10. The data show a near-perfect sepa-
ration regarding the Lombardiness of the three approaches.

Fig. 10. A scatter plot of the Lombardiness of a collection of 250 graphs with straight-line,
tangent-based, and dummy-vertex embeddings (with many data points overlapping).

Both of our approaches work very well at increasing the distance between graph
vertices. This is done as a separate step in the dummy-vertex approach, and during
this phase it is the primary focus of the algorithm. The tangent-based method sacrifices
some of this distribution of nodes for the sake angular resolution, but still results in
fairly uniform final locations, albeit not always as balanced as in the dummy-vertex
approach (e.g., see Fig. 13 in the appendix).
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An interesting advantage demonstrated by the dummy-vertex approach is the in-
crease in the distances between vertices and non-incident edges over both the straight-
line drawings and results of the tangent-based approach. The reason for this is intuitive—
each dummy vertex is repulsed by other edges and graph vertices, and so edges resist
getting too close to other edges or non-incident vertices. This helps alleviate a distrac-
tion when edges pass too close to non-incident vertices, which a reader can mistake for
an adjacency.

One additional observation we can make concerns edge crossings. While neither
algorithm directly attempts to prevent crossings in the final drawings, both algorithm’s
tendency to spread vertices tends to reduce crossings in simple cases. In some cases, the
tangent-based method will create crossings in its pursuit of better angular resolution,
while in other cases, the dummy-vertex method allows edge crossings to occur because
it takes the vertex positions as given from a straight-line force-directed method.

5 Conclusion and Future Work
We demonstrated two extensions of the spring-embedder paradigm for creating Lom-
bardi and near-Lombardi drawings. A feature that can often be seen in Mark Lombardi’s
art is that many vertices follow common trajectories. This feature is not included in the
definition of a Lombardi drawing [12], but does occur frequently in drawings obtained
by our spring embedders, especially when taking the dummy-vertex approach. While
previous work on using cubic Bézier curves for good angular resolution is similar in
spirit, the resulting drawings do not have vertices following common trajectories.

There are several natural directions to explore in future work, including alternative
formulations of spring forces, a multi-level version that would scale to larger graphs, as
well as possible use of this approach along with confluent drawing and edge bundling. A
very informal user feedback indicates some aesthetic appeal of the drawings produced
by the Lombardi spring embedder. Some keywords and phrases associated with these
types of drawings were “more natural, ” “balloon animals,” “blobby,” “cute and cuddly,”
in contrast with the traditional straight-line realizations which were more “jagged” and
“angular.”
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Trees with Perfect Angular Resolution and Polynomial Area. In Proc. 18th Int. Symp. on
Graph Drawing (GD 2010), 2010.

12. C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and M. Nöllenburg. Lombardi
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Appendix
In this appendix, we include some examples of Mark Lombardi’s art and some more
drawings generated by our two Lombardi Spring Embedder algorithms. In Fig. 11 we
can see that near-perfect angular resolution is a good approximation to what the artist
used. In Fig 12 we can also see that groups of vertices follow well-defined trajectories.

Fig. 11. Examples of Mark Lombardi’s art; (a) The topmost vertex could probably be
realized with perfect angular, but it is not, probably to allow for clear and well-defined
trajectories of a number of vertices in the actual drawing. (b) Several vertices deviate
from the normal perfect angular resolution, probably to accommodate more important
nodes, which often have very well distributed vertices, unless there is a “direction” in the
underlying story.

Fig. 12. A large example of Mark Lombardi’s, showing several multi-vertex trajectories
and hard-wired left-to-right time component.

We include a few more examples of graphs drawn by our Lombardi spring em-
bedder algorithms, which illustrate some of the complementary strengths of the two
approaches, in Fig. 13.
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Lombardiness = 87 Lombardiness = 98 Lombardiness = 88 Lombardiness = 99

Lombardiness = 81 Lombardiness = 96 Lombardiness = 91 Lombardiness = 99

Lombardiness = 89 Lombardiness = 98 Lombardiness = 86 Lombardiness = 95

Lombardiness = 83 Lombardiness = 99 Lombardiness = 87 Lombardiness = 99

Lombardiness = 87 Lombardiness = 98 Lombardiness = 93 Lombardiness = 99

Fig. 13. Some example Lombardi-style drawings using the two force-directed ap-
proaches. For each pair, the drawing on the left was done using the dummy-vertex
approach and the drawing on the right was done using the tangent-based approach.
The Lombardiness score for each is given below.
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